{"title":"Enhancing Real-Time Patient Monitoring in Intensive Care Units with Deep Learning and the Internet of Things.","authors":"Yiting Bai, Baiqian Gu, Chao Tang","doi":"10.1089/big.2024.0113","DOIUrl":null,"url":null,"abstract":"<p><p>The demand for intensive care units (ICUs) is steadily increasing, yet there is a relative shortage of medical staff to meet this need. Intensive care work is inherently heavy and stressful, highlighting the importance of optimizing these units' working conditions and processes. Such optimization is crucial for enhancing work efficiency and elevating the level of diagnosis and treatment provided in ICUs. The intelligent ICU concept represents a novel ward management model that has emerged through advancements in modern science and technology. This includes communication technology, the Internet of Things (IoT), artificial intelligence (AI), robotics, and big data analytics. By leveraging these technologies, the intelligent ICU aims to significantly reduce potential risks associated with human error and improve patient monitoring and treatment outcomes. Deep learning (DL) and IoT technologies have huge potential to revolutionize the surveillance of patients in the ICUs due to the critical and complex nature of their conditions. This article provides an overview of the most recent research and applications of linical data for critically ill patients, with a focus on the execution of AI. In the ICU, seamless and continuous monitoring is critical, as even little delays in patient care decision-making can result in irreparable repercussions or death. This article looks at how modern technologies like DL and the IoT can improve patient monitoring, clinical results, and ICU processes. Furthermore, it investigates the function of wearable and advanced health sensors coupled with IoT networking systems, which enable the secure connection and analysis of various forms of patient data for predictive and remote analysis by medical professionals. By assessing existing patient monitoring systems, outlining the roles of DL and IoT, and analyzing the benefits and limitations of their integration, this study hopes to shed light on the future of ICU patient care and identify opportunities for further research.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2024.0113","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The demand for intensive care units (ICUs) is steadily increasing, yet there is a relative shortage of medical staff to meet this need. Intensive care work is inherently heavy and stressful, highlighting the importance of optimizing these units' working conditions and processes. Such optimization is crucial for enhancing work efficiency and elevating the level of diagnosis and treatment provided in ICUs. The intelligent ICU concept represents a novel ward management model that has emerged through advancements in modern science and technology. This includes communication technology, the Internet of Things (IoT), artificial intelligence (AI), robotics, and big data analytics. By leveraging these technologies, the intelligent ICU aims to significantly reduce potential risks associated with human error and improve patient monitoring and treatment outcomes. Deep learning (DL) and IoT technologies have huge potential to revolutionize the surveillance of patients in the ICUs due to the critical and complex nature of their conditions. This article provides an overview of the most recent research and applications of linical data for critically ill patients, with a focus on the execution of AI. In the ICU, seamless and continuous monitoring is critical, as even little delays in patient care decision-making can result in irreparable repercussions or death. This article looks at how modern technologies like DL and the IoT can improve patient monitoring, clinical results, and ICU processes. Furthermore, it investigates the function of wearable and advanced health sensors coupled with IoT networking systems, which enable the secure connection and analysis of various forms of patient data for predictive and remote analysis by medical professionals. By assessing existing patient monitoring systems, outlining the roles of DL and IoT, and analyzing the benefits and limitations of their integration, this study hopes to shed light on the future of ICU patient care and identify opportunities for further research.
Big DataCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍:
Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions.
Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government.
Big Data coverage includes:
Big data industry standards,
New technologies being developed specifically for big data,
Data acquisition, cleaning, distribution, and best practices,
Data protection, privacy, and policy,
Business interests from research to product,
The changing role of business intelligence,
Visualization and design principles of big data infrastructures,
Physical interfaces and robotics,
Social networking advantages for Facebook, Twitter, Amazon, Google, etc,
Opportunities around big data and how companies can harness it to their advantage.