AOPs to connect food additives' effects on gut microbiota to health outcomes.

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Laure-Alix Clerbaux
{"title":"AOPs to connect food additives' effects on gut microbiota to health outcomes.","authors":"Laure-Alix Clerbaux","doi":"10.14573/altex.2411271","DOIUrl":null,"url":null,"abstract":"<p><p>Gut microbiota play a central role in human health, notably through the production of metabolites, including short-chain fatty acids, secondary bile acids, vitamins or neurotransmitters. Beyond contributing to gut health, these microbial metabolites significantly impact multiple organ systems by activating key signaling pathways along the gut-organ axes, including the gut-liver, gut-brain, and gut-bone axes. Chemicals ingested through food such as food additives, extensively used to enhance the texture, preservation and appearance of foods, may interact with our gut microbiota, altering metabolite production, and this can have consequences for our health. However, gut microbial metabolism is currently overlooked in toxicology. While efforts are underway to develop standardized human-based new approach methodologies to assess compound-microbiome interactions, anchoring those assays within the adverse outcome pathway (AOP) framework would offer a structured way to connect changes in gut microbial metabolism to adverse health outcomes. Using human-based models enhances the relevance of the results while supporting the reduction of animal-based testing in toxicology research.</p>","PeriodicalId":51231,"journal":{"name":"Altex-Alternatives To Animal Experimentation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Altex-Alternatives To Animal Experimentation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14573/altex.2411271","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Gut microbiota play a central role in human health, notably through the production of metabolites, including short-chain fatty acids, secondary bile acids, vitamins or neurotransmitters. Beyond contributing to gut health, these microbial metabolites significantly impact multiple organ systems by activating key signaling pathways along the gut-organ axes, including the gut-liver, gut-brain, and gut-bone axes. Chemicals ingested through food such as food additives, extensively used to enhance the texture, preservation and appearance of foods, may interact with our gut microbiota, altering metabolite production, and this can have consequences for our health. However, gut microbial metabolism is currently overlooked in toxicology. While efforts are underway to develop standardized human-based new approach methodologies to assess compound-microbiome interactions, anchoring those assays within the adverse outcome pathway (AOP) framework would offer a structured way to connect changes in gut microbial metabolism to adverse health outcomes. Using human-based models enhances the relevance of the results while supporting the reduction of animal-based testing in toxicology research.

AOPs将食品添加剂对肠道微生物群的影响与健康结果联系起来。
肠道菌群被公认为在人类健康中发挥着核心作用,特别是通过产生各种代谢物,包括短链脂肪酸、次级胆汁酸、维生素或神经递质。除了促进肠道健康本身,这些微生物代谢物还通过参与记录良好的肠道-器官轴上的关键信号通路,显著影响多个器官系统。通过食物摄入的化学物质可能会与我们的肠道微生物群相互作用,改变代谢物的产生,从而对健康产生影响。然而,肠道微生物代谢目前在毒理学中被忽视。虽然正在努力开发标准化的基于人类的新方法方法来评估微生物组成分的相互作用,但将这些分析固定在基于机械的框架内将增强其相关性和监管实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Altex-Alternatives To Animal Experimentation
Altex-Alternatives To Animal Experimentation MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
7.70
自引率
8.90%
发文量
89
审稿时长
2 months
期刊介绍: ALTEX publishes original articles, short communications, reviews, as well as news and comments and meeting reports. Manuscripts submitted to ALTEX are evaluated by two expert reviewers. The evaluation takes into account the scientific merit of a manuscript and its contribution to animal welfare and the 3R principle.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信