The transmembrane protein TMEM196 controls cell proliferation and determines the floor plate cell lineage.

IF 1.7 4区 生物学 Q4 CELL BIOLOGY
Yumi Matsumoto, Seiichi Tamaru, Xing Chen, Takuma Shinozuka, Yuichi Sakumura, Noriaki Sasai
{"title":"The transmembrane protein TMEM196 controls cell proliferation and determines the floor plate cell lineage.","authors":"Yumi Matsumoto, Seiichi Tamaru, Xing Chen, Takuma Shinozuka, Yuichi Sakumura, Noriaki Sasai","doi":"10.1111/dgd.12960","DOIUrl":null,"url":null,"abstract":"<p><p>The neural tube, the embryonic precursor to the vertebrate central nervous system, comprises distinct progenitor and neuronal domains, each with specific proliferation programs. In this study, we identified TMEM196, a novel transmembrane protein that plays a crucial role in regulating cell proliferation in the floor plate in chick embryos. TMEM196 is expressed in the floor plate, and its overexpression leads to reduced cell proliferation without affecting the pattern formation of the neural tube. We also established the floor plate differentiation protocol of the mouse embryonic stem cells, and analyzed the function of TMEM196 with this system. Mutating the Tmem196 gene does not alter cell division and overall differentiation remains unchanged within the neural cells. However, TMEM196 inhibits Wnt signaling, and Tmem196 mutant cells exhibit aberrant paraxial mesoderm differentiation, suggesting that TMEM196 selects the floor plate cell fate at the binary decision of the neuromesodermal cells. These findings highlight TMEM196 as a key regulator of both cell proliferation and floor plate determination, contributing to proper regionalization during embryogenesis.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Growth & Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/dgd.12960","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The neural tube, the embryonic precursor to the vertebrate central nervous system, comprises distinct progenitor and neuronal domains, each with specific proliferation programs. In this study, we identified TMEM196, a novel transmembrane protein that plays a crucial role in regulating cell proliferation in the floor plate in chick embryos. TMEM196 is expressed in the floor plate, and its overexpression leads to reduced cell proliferation without affecting the pattern formation of the neural tube. We also established the floor plate differentiation protocol of the mouse embryonic stem cells, and analyzed the function of TMEM196 with this system. Mutating the Tmem196 gene does not alter cell division and overall differentiation remains unchanged within the neural cells. However, TMEM196 inhibits Wnt signaling, and Tmem196 mutant cells exhibit aberrant paraxial mesoderm differentiation, suggesting that TMEM196 selects the floor plate cell fate at the binary decision of the neuromesodermal cells. These findings highlight TMEM196 as a key regulator of both cell proliferation and floor plate determination, contributing to proper regionalization during embryogenesis.

跨膜蛋白TMEM196控制细胞增殖并决定底板细胞谱系。
神经管是脊椎动物中枢神经系统的胚胎前体,由不同的祖细胞和神经元结构域组成,每个结构域都有特定的增殖程序。在这项研究中,我们发现了一种新的跨膜蛋白TMEM196,它在调节鸡胚胎底板细胞增殖中起着至关重要的作用。TMEM196在底板中表达,其过表达导致细胞增殖减少,但不影响神经管图案的形成。我们还建立了小鼠胚胎干细胞的底板分化方案,并利用该系统分析了TMEM196的功能。突变Tmem196基因不会改变细胞分裂,神经细胞内的整体分化保持不变。然而,TMEM196抑制Wnt信号,TMEM196突变细胞表现出异常的近轴中胚层分化,表明TMEM196在神经中胚层细胞的二元决策中选择了底板细胞的命运。这些发现强调了TMEM196是细胞增殖和底板决定的关键调节因子,有助于胚胎发生过程中的适当区域化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Development Growth & Differentiation
Development Growth & Differentiation 生物-发育生物学
CiteScore
4.60
自引率
4.00%
发文量
62
审稿时长
6 months
期刊介绍: Development Growth & Differentiation (DGD) publishes three types of articles: original, resource, and review papers. Original papers are on any subjects having a context in development, growth, and differentiation processes in animals, plants, and microorganisms, dealing with molecular, genetic, cellular and organismal phenomena including metamorphosis and regeneration, while using experimental, theoretical, and bioinformatic approaches. Papers on other related fields are also welcome, such as stem cell biology, genomics, neuroscience, Evodevo, Ecodevo, and medical science as well as related methodology (new or revised techniques) and bioresources. Resource papers describe a dataset, such as whole genome sequences and expressed sequence tags (ESTs), with some biological insights, which should be valuable for studying the subjects as mentioned above. Submission of review papers is also encouraged, especially those providing a new scope based on the authors’ own study, or a summarization of their study series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信