{"title":"Microbial Primer: Microbiome and thermal tolerance - a new frontier in climate resilience?","authors":"Jingdi Li, Kayla King","doi":"10.1099/mic.0.001523","DOIUrl":null,"url":null,"abstract":"<p><p>Microbiome-animal host symbioses are ubiquitous in nature. Animal-associated microbiomes can play a crucial role in host physiology, health and resilience to environmental stressors. As climate change drives rising global temperatures and increases the frequency of thermal extremes, microbiomes are emerging as a new frontier in buffering vulnerable animals against temperature fluctuations. In this primer, we briefly introduce key concepts of microbiome-host symbiosis and microbial responses to temperature shifts. We then summarize the current evidence and understanding of how microbes can buffer the thermal stress faced by their hosts. We identify key challenges for future research. Finally, we emphasize the potential of harnessing microbiomes to improve conservation strategies in a rapidly changing climate, offering a concise overview of this evolving field.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"171 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750044/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001523","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbiome-animal host symbioses are ubiquitous in nature. Animal-associated microbiomes can play a crucial role in host physiology, health and resilience to environmental stressors. As climate change drives rising global temperatures and increases the frequency of thermal extremes, microbiomes are emerging as a new frontier in buffering vulnerable animals against temperature fluctuations. In this primer, we briefly introduce key concepts of microbiome-host symbiosis and microbial responses to temperature shifts. We then summarize the current evidence and understanding of how microbes can buffer the thermal stress faced by their hosts. We identify key challenges for future research. Finally, we emphasize the potential of harnessing microbiomes to improve conservation strategies in a rapidly changing climate, offering a concise overview of this evolving field.
期刊介绍:
We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms.
Topics include but are not limited to:
Antimicrobials and antimicrobial resistance
Bacteriology and parasitology
Biochemistry and biophysics
Biofilms and biological systems
Biotechnology and bioremediation
Cell biology and signalling
Chemical biology
Cross-disciplinary work
Ecology and environmental microbiology
Food microbiology
Genetics
Host–microbe interactions
Microbial methods and techniques
Microscopy and imaging
Omics, including genomics, proteomics and metabolomics
Physiology and metabolism
Systems biology and synthetic biology
The microbiome.