Harriet V Mears, George R Young, Theo Sanderson, Ruth Harvey, Jamie Barrett-Rodger, Rebecca Penn, Vanessa Cowton, Wilhelm Furnon, Giuditta De Lorenzo, Marg Crawford, Daniel M Snell, Ashley S Fowler, Anob M Chakrabarti, Saira Hussain, Ciarán Gilbride, Edward Emmott, Katja Finsterbusch, Jakub Luptak, Thomas P Peacock, Jérôme Nicod, Arvind H Patel, Massimo Palmarini, Emma Wall, Bryan Williams, Sonia Gandhi, Charles Swanton, David L V Bauer
{"title":"Emergence of SARS-CoV-2 subgenomic RNAs that enhance viral fitness and immune evasion.","authors":"Harriet V Mears, George R Young, Theo Sanderson, Ruth Harvey, Jamie Barrett-Rodger, Rebecca Penn, Vanessa Cowton, Wilhelm Furnon, Giuditta De Lorenzo, Marg Crawford, Daniel M Snell, Ashley S Fowler, Anob M Chakrabarti, Saira Hussain, Ciarán Gilbride, Edward Emmott, Katja Finsterbusch, Jakub Luptak, Thomas P Peacock, Jérôme Nicod, Arvind H Patel, Massimo Palmarini, Emma Wall, Bryan Williams, Sonia Gandhi, Charles Swanton, David L V Bauer","doi":"10.1371/journal.pbio.3002982","DOIUrl":null,"url":null,"abstract":"<p><p>Coronaviruses express their structural and accessory genes via a set of subgenomic RNAs, whose synthesis is directed by transcription regulatory sequences (TRSs) in the 5' genomic leader and upstream of each body open reading frame. In SARS-CoV-2, the TRS has the consensus AAACGAAC; upon searching for emergence of this motif in the global SARS-CoV-2 sequences, we find that it evolves frequently, especially in the 3' end of the genome. We show well-supported examples upstream of the Spike gene-within the nsp16 coding region of ORF1b-which is expressed during human infection, and upstream of the canonical Envelope gene TRS, both of which have evolved convergently in multiple lineages. The most frequent neo-TRS is within the coding region of the Nucleocapsid gene, and is present in virtually all viruses from the B.1.1 lineage, including the variants of concern Alpha, Gamma, Omicron and descendants thereof. Here, we demonstrate that this TRS leads to the expression of a novel subgenomic mRNA encoding a truncated C-terminal portion of Nucleocapsid, which is an antagonist of type I interferon production and contributes to viral fitness during infection. We observe distinct phenotypes when the Nucleocapsid coding sequence is mutated compared to when the TRS alone is ablated. Our findings demonstrate that SARS-CoV-2 is undergoing evolutionary changes at the functional RNA level in addition to the amino acid level.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3002982"},"PeriodicalIF":9.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002982","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Coronaviruses express their structural and accessory genes via a set of subgenomic RNAs, whose synthesis is directed by transcription regulatory sequences (TRSs) in the 5' genomic leader and upstream of each body open reading frame. In SARS-CoV-2, the TRS has the consensus AAACGAAC; upon searching for emergence of this motif in the global SARS-CoV-2 sequences, we find that it evolves frequently, especially in the 3' end of the genome. We show well-supported examples upstream of the Spike gene-within the nsp16 coding region of ORF1b-which is expressed during human infection, and upstream of the canonical Envelope gene TRS, both of which have evolved convergently in multiple lineages. The most frequent neo-TRS is within the coding region of the Nucleocapsid gene, and is present in virtually all viruses from the B.1.1 lineage, including the variants of concern Alpha, Gamma, Omicron and descendants thereof. Here, we demonstrate that this TRS leads to the expression of a novel subgenomic mRNA encoding a truncated C-terminal portion of Nucleocapsid, which is an antagonist of type I interferon production and contributes to viral fitness during infection. We observe distinct phenotypes when the Nucleocapsid coding sequence is mutated compared to when the TRS alone is ablated. Our findings demonstrate that SARS-CoV-2 is undergoing evolutionary changes at the functional RNA level in addition to the amino acid level.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.