Simple Auto-Associative Networks Succeed at Universal Generalization of the Identity Function and Reduplication Rule

IF 2.3 2区 心理学 Q2 PSYCHOLOGY, EXPERIMENTAL
Kenneth J. Kurtz
{"title":"Simple Auto-Associative Networks Succeed at Universal Generalization of the Identity Function and Reduplication Rule","authors":"Kenneth J. Kurtz","doi":"10.1111/cogs.70033","DOIUrl":null,"url":null,"abstract":"<p>It has become widely accepted that standard connectionist models are unable to show identity-based relational reasoning that requires universal generalization. The purpose of this brief report is to show how one of the simplest forms of such models, feed-forward auto-associative networks, satisfies two of the most well-known challenges: universal generalization of the identity function and the reduplication rule. Given the simplicity of the modeling account provided, along with the clarity of the evidence, these demonstrations invite a shift in this high-profile debate over the nature of cognitive architecture and point to a way to bridge some of the presumed gulf between characteristically symbolic forms of reasoning and connectionist mechanisms.</p>","PeriodicalId":48349,"journal":{"name":"Cognitive Science","volume":"49 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737470/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Science","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cogs.70033","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

It has become widely accepted that standard connectionist models are unable to show identity-based relational reasoning that requires universal generalization. The purpose of this brief report is to show how one of the simplest forms of such models, feed-forward auto-associative networks, satisfies two of the most well-known challenges: universal generalization of the identity function and the reduplication rule. Given the simplicity of the modeling account provided, along with the clarity of the evidence, these demonstrations invite a shift in this high-profile debate over the nature of cognitive architecture and point to a way to bridge some of the presumed gulf between characteristically symbolic forms of reasoning and connectionist mechanisms.

Abstract Image

简单自关联网络成功地推广了恒等函数和重复规则。
标准联结主义模型无法显示需要普遍泛化的基于身份的关系推理,这一点已被广泛接受。这个简短报告的目的是展示这种模型的最简单形式之一,前馈自关联网络,如何满足两个最著名的挑战:恒等函数的普遍泛化和重复规则。鉴于所提供的建模描述的简单性,以及证据的清晰性,这些演示引起了对认知架构本质的高调辩论的转变,并指出了一种弥合典型的象征性推理形式和连接主义机制之间假定鸿沟的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Science
Cognitive Science PSYCHOLOGY, EXPERIMENTAL-
CiteScore
4.10
自引率
8.00%
发文量
139
期刊介绍: Cognitive Science publishes articles in all areas of cognitive science, covering such topics as knowledge representation, inference, memory processes, learning, problem solving, planning, perception, natural language understanding, connectionism, brain theory, motor control, intentional systems, and other areas of interdisciplinary concern. Highest priority is given to research reports that are specifically written for a multidisciplinary audience. The audience is primarily researchers in cognitive science and its associated fields, including anthropologists, education researchers, psychologists, philosophers, linguists, computer scientists, neuroscientists, and roboticists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信