{"title":"Knowledge distillation approach for skin cancer classification on lightweight deep learning model","authors":"Suman Saha, Md. Moniruzzaman Hemal, Md. Zunead Abedin Eidmum, Muhammad Firoz Mridha","doi":"10.1049/htl2.12120","DOIUrl":null,"url":null,"abstract":"<p>Over the past decade, there has been a global increase in the incidence of skin cancers. Skin cancer has serious consequences if left untreated, potentially leading to more advanced cancer stages. In recent years, deep learning based convolutional neural network have emerged as powerful tools for skin cancer detection. Generally, deep learning approaches are computationally expensive and require large storage space. Therefore, deploying such a large complex model on resource-constrained devices is challenging. An ultra-light and accurate deep learning model is highly desirable for better inference time and memory in low-power-consuming devices. Knowledge distillation is an approach for transferring knowledge from a large network to a small network. This small network is easily compatible with resource-constrained embedded devices while maintaining accuracy. The main aim of this study is to develop a deep learning-based lightweight network based on knowledge distillation that identifies the presence of skin cancer. Here, different training strategies are implemented for the modified benchmark (Phase 1) and custom-made model (Phase 2) and demonstrated various distillation configurations on two datasets: HAM10000 and ISIC2019. In Phase 1, the student model using knowledge distillation achieved accuracies ranging from 88.69% to 93.24% for HAM10000 and from 82.14% to 84.13% on ISIC2019. In Phase 2, the accuracies ranged from 88.63% to 88.89% on HAM10000 and from 81.39% to 83.42% on ISIC2019. These results highlight the effectiveness of knowledge distillation in improving the classification performance across diverse datasets and enabling the student model to approach the performance of the teacher model. In addition, the distilled student model can be easily deployed on resource-constrained devices for automated skin cancer detection due to its lower computational complexity.</p>","PeriodicalId":37474,"journal":{"name":"Healthcare Technology Letters","volume":"12 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733311/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/htl2.12120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past decade, there has been a global increase in the incidence of skin cancers. Skin cancer has serious consequences if left untreated, potentially leading to more advanced cancer stages. In recent years, deep learning based convolutional neural network have emerged as powerful tools for skin cancer detection. Generally, deep learning approaches are computationally expensive and require large storage space. Therefore, deploying such a large complex model on resource-constrained devices is challenging. An ultra-light and accurate deep learning model is highly desirable for better inference time and memory in low-power-consuming devices. Knowledge distillation is an approach for transferring knowledge from a large network to a small network. This small network is easily compatible with resource-constrained embedded devices while maintaining accuracy. The main aim of this study is to develop a deep learning-based lightweight network based on knowledge distillation that identifies the presence of skin cancer. Here, different training strategies are implemented for the modified benchmark (Phase 1) and custom-made model (Phase 2) and demonstrated various distillation configurations on two datasets: HAM10000 and ISIC2019. In Phase 1, the student model using knowledge distillation achieved accuracies ranging from 88.69% to 93.24% for HAM10000 and from 82.14% to 84.13% on ISIC2019. In Phase 2, the accuracies ranged from 88.63% to 88.89% on HAM10000 and from 81.39% to 83.42% on ISIC2019. These results highlight the effectiveness of knowledge distillation in improving the classification performance across diverse datasets and enabling the student model to approach the performance of the teacher model. In addition, the distilled student model can be easily deployed on resource-constrained devices for automated skin cancer detection due to its lower computational complexity.
期刊介绍:
Healthcare Technology Letters aims to bring together an audience of biomedical and electrical engineers, physical and computer scientists, and mathematicians to enable the exchange of the latest ideas and advances through rapid online publication of original healthcare technology research. Major themes of the journal include (but are not limited to): Major technological/methodological areas: Biomedical signal processing Biomedical imaging and image processing Bioinstrumentation (sensors, wearable technologies, etc) Biomedical informatics Major application areas: Cardiovascular and respiratory systems engineering Neural engineering, neuromuscular systems Rehabilitation engineering Bio-robotics, surgical planning and biomechanics Therapeutic and diagnostic systems, devices and technologies Clinical engineering Healthcare information systems, telemedicine, mHealth.