Unifying community whole-brain imaging datasets enables robust neuron identification and reveals determinants of neuron position in C. elegans.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2025-01-27 Epub Date: 2025-01-17 DOI:10.1016/j.crmeth.2024.100964
Daniel Y Sprague, Kevin Rusch, Raymond L Dunn, Jackson M Borchardt, Steven Ban, Greg Bubnis, Grace C Chiu, Chentao Wen, Ryoga Suzuki, Shivesh Chaudhary, Hyun Jee Lee, Zikai Yu, Benjamin Dichter, Ryan Ly, Shuichi Onami, Hang Lu, Koutarou D Kimura, Eviatar Yemini, Saul Kato
{"title":"Unifying community whole-brain imaging datasets enables robust neuron identification and reveals determinants of neuron position in C. elegans.","authors":"Daniel Y Sprague, Kevin Rusch, Raymond L Dunn, Jackson M Borchardt, Steven Ban, Greg Bubnis, Grace C Chiu, Chentao Wen, Ryoga Suzuki, Shivesh Chaudhary, Hyun Jee Lee, Zikai Yu, Benjamin Dichter, Ryan Ly, Shuichi Onami, Hang Lu, Koutarou D Kimura, Eviatar Yemini, Saul Kato","doi":"10.1016/j.crmeth.2024.100964","DOIUrl":null,"url":null,"abstract":"<p><p>We develop a data harmonization approach for C. elegans volumetric microscopy data, consisting of a standardized format, pre-processing techniques, and human-in-the-loop machine-learning-based analysis tools. Using this approach, we unify a diverse collection of 118 whole-brain neural activity imaging datasets from five labs, storing these and accompanying tools in an online repository WormID (wormid.org). With this repository, we train three existing automated cell-identification algorithms, CPD, StatAtlas, and CRF_ID, to enable accuracy that generalizes across labs, recovering all human-labeled neurons in some cases. We mine this repository to identify factors that influence the developmental positioning of neurons. This growing resource of data, code, apps, and tutorials enables users to (1) study neuroanatomical organization and neural activity across diverse experimental paradigms, (2) develop and benchmark algorithms for automated neuron detection, segmentation, cell identification, tracking, and activity extraction, and (3) share data with the community and comply with data-sharing policies.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100964"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11840940/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a data harmonization approach for C. elegans volumetric microscopy data, consisting of a standardized format, pre-processing techniques, and human-in-the-loop machine-learning-based analysis tools. Using this approach, we unify a diverse collection of 118 whole-brain neural activity imaging datasets from five labs, storing these and accompanying tools in an online repository WormID (wormid.org). With this repository, we train three existing automated cell-identification algorithms, CPD, StatAtlas, and CRF_ID, to enable accuracy that generalizes across labs, recovering all human-labeled neurons in some cases. We mine this repository to identify factors that influence the developmental positioning of neurons. This growing resource of data, code, apps, and tutorials enables users to (1) study neuroanatomical organization and neural activity across diverse experimental paradigms, (2) develop and benchmark algorithms for automated neuron detection, segmentation, cell identification, tracking, and activity extraction, and (3) share data with the community and comply with data-sharing policies.

统一的社区全脑成像数据集可以实现稳健的神经元识别,并揭示秀丽隐杆线虫神经元位置的决定因素。
我们开发了秀丽隐杆线虫体积显微镜数据的数据协调方法,包括标准化格式,预处理技术和基于人在环机器学习的分析工具。使用这种方法,我们统一了来自五个实验室的118个全脑神经活动成像数据集,并将这些数据集和相关工具存储在一个在线存储库WormID (wormid.org)中。有了这个存储库,我们训练了三种现有的自动细胞识别算法,CPD, StatAtlas和CRF_ID,以实现跨实验室推广的准确性,在某些情况下恢复所有人类标记的神经元。我们挖掘这个存储库,以确定影响神经元发育定位的因素。这种不断增长的数据、代码、应用程序和教程资源使用户能够(1)跨不同的实验范式研究神经解剖组织和神经活动,(2)开发和基准算法,用于自动神经元检测、分割、细胞识别、跟踪和活动提取,以及(3)与社区共享数据并遵守数据共享政策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信