Multimodal hierarchical classification of CITE-seq data delineates immune cell states across lineages and tissues.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2025-01-27 Epub Date: 2025-01-14 DOI:10.1016/j.crmeth.2024.100938
Daniel P Caron, William L Specht, David Chen, Steven B Wells, Peter A Szabo, Isaac J Jensen, Donna L Farber, Peter A Sims
{"title":"Multimodal hierarchical classification of CITE-seq data delineates immune cell states across lineages and tissues.","authors":"Daniel P Caron, William L Specht, David Chen, Steven B Wells, Peter A Szabo, Isaac J Jensen, Donna L Farber, Peter A Sims","doi":"10.1016/j.crmeth.2024.100938","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell RNA sequencing (scRNA-seq) is invaluable for profiling cellular heterogeneity and transcriptional states, but transcriptomic profiles do not always delineate subsets defined by surface proteins. Cellular indexing of transcriptomes and epitopes (CITE-seq) enables simultaneous profiling of single-cell transcriptomes and surface proteomes; however, accurate cell-type annotation requires a classifier that integrates multimodal data. Here, we describe multimodal classifier hierarchy (MMoCHi), a marker-based approach for accurate cell-type classification across multiple single-cell modalities that does not rely on reference atlases. We benchmark MMoCHi using sorted T lymphocyte subsets and annotate a cross-tissue human immune cell dataset. MMoCHi outperforms leading transcriptome-based classifiers and multimodal unsupervised clustering in its ability to identify immune cell subsets that are not readily resolved and to reveal subset markers. MMoCHi is designed for adaptability and can integrate annotation of cell types and developmental states across diverse lineages, samples, or modalities.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100938"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11840950/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell RNA sequencing (scRNA-seq) is invaluable for profiling cellular heterogeneity and transcriptional states, but transcriptomic profiles do not always delineate subsets defined by surface proteins. Cellular indexing of transcriptomes and epitopes (CITE-seq) enables simultaneous profiling of single-cell transcriptomes and surface proteomes; however, accurate cell-type annotation requires a classifier that integrates multimodal data. Here, we describe multimodal classifier hierarchy (MMoCHi), a marker-based approach for accurate cell-type classification across multiple single-cell modalities that does not rely on reference atlases. We benchmark MMoCHi using sorted T lymphocyte subsets and annotate a cross-tissue human immune cell dataset. MMoCHi outperforms leading transcriptome-based classifiers and multimodal unsupervised clustering in its ability to identify immune cell subsets that are not readily resolved and to reveal subset markers. MMoCHi is designed for adaptability and can integrate annotation of cell types and developmental states across diverse lineages, samples, or modalities.

CITE-seq数据的多模式分层分类描绘了跨谱系和组织的免疫细胞状态。
单细胞RNA测序(scRNA-seq)对于分析细胞异质性和转录状态是无价的,但转录组谱并不总是描绘由表面蛋白定义的亚群。转录组和表位的细胞索引(CITE-seq)可以同时分析单细胞转录组和表面蛋白质组;然而,准确的单元格类型注释需要一个集成多模态数据的分类器。在这里,我们描述了多模态分类器层次结构(MMoCHi),这是一种基于标记的方法,用于跨多个单细胞模式进行准确的细胞类型分类,而不依赖于参考地图集。我们使用分类的T淋巴细胞亚群对MMoCHi进行基准测试,并注释跨组织的人类免疫细胞数据集。MMoCHi在识别不易分解的免疫细胞亚群和揭示亚群标记的能力上优于领先的基于转录组的分类器和多模态无监督聚类。MMoCHi是为适应性而设计的,可以整合不同谱系、样本或模式的细胞类型和发育状态的注释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信