{"title":"[<i>Gynostemma pentaphyllum</i> ethanol extract ameliorates motor dysfunction in a Parkinson<b>'</b>s disease mouse model through inhibiting neuronal apoptosis].","authors":"Tingting Zhao, Lanqiao He, Sen Yan, Pengyu Fan, Chong Zhang, Linghui Zeng","doi":"10.3724/zdxbyxb-2024-0218","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To investigate the protective effects and underlying mechanisms of <i>Gynostemma pentaphyllum</i> (GP)ethanol extract on motor dysfunction in a mouse model of Parkinson's disease (PD).</p><p><strong>Methods: </strong>Eighty C57BL/6 male mice were randomly divided into five groups: control group, model group, levodopa group (positive control group), low-dose GP group, and high-dose GP group, with 16 mice per group. The PD model was induced by injection of 6-hydroxydopamine into the substantia nigra pars reticulata of the mice. Two weeks after 6-hydroxydopamine, positive control group received intraperitoneal injection of levodopa 10 mg·kg<sup>-1</sup>·d<sup>-1</sup>, while low-dose GP and high-dose GP groups received GP extract 100 or 200 mg·kg<sup>-1</sup>·d<sup>-1</sup> orally for three weeks. After a 3-week-treatment, the effects of GP on motor dysfunction in 6-hydroxydopamine-induced PD were assessed using open field and CatWalk gait tests, while the effects on muscle strength were evaluated by forelimb grip strength. Immunofluorescence staining was used to detect the number of tyrosine hydroxylase (TH) positive neurons. The levels of dopamine and serotonin in the midbrain were determined by enzyme-linked immunosorbent assay. In addition, Western blotting was performed to detect the expression of mitogen-activated protein kinase (MAPK) family proteins such as p-extracellular signal-regulated kinase (ERK)1/2, p-p38 and p-c-Jun N-terminal kinase (JNK)1/2, and mitochondrial apoptosis pathway proteins such as B-cell lymphoma (Bcl)-2, Bcl-2 associated X protein (Bax), and cleaved-cysteine aspartic acid specific protease (caspase)-3.</p><p><strong>Results: </strong>Behavioral experiments showed that GP significantly improved the spontaneous activity and motor coordination of PD mice (<i>P</i><0.05). The forelimb grip strength was also increased by GP treatment (<i>P<</i>0.05), compared to the PD model group. In addition, compared with the model group, the number of TH-positive neurons in substantia nigra pars reticulata region, the levels of dopamine and serotonin in midbrain and the expression of p-ERK1/2 were significantly increased by GP treatment (all <i>P</i><0.05), whereas the expression of p-p38 and p-JNK1/2, the ratio of Bax/Bcl-2 and cleaved-caspase-3/caspase-3 were significantly decreased (all <i>P</i><0.05).</p><p><strong>Conclusions: </strong>The results indicate that GP might increase dopamine and serotonin levels in the midbrain and promote the survival of dopaminergic neurons in substantia nigra pars reticulata by regulating the expression of phosphorylation of MAPK family proteins and the expression of mitochondrial apoptosis-related proteins, thereby ameliorating motor deficits in PD mice.</p>","PeriodicalId":24007,"journal":{"name":"Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences","volume":" ","pages":"49-57"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11956861/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3724/zdxbyxb-2024-0218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To investigate the protective effects and underlying mechanisms of Gynostemma pentaphyllum (GP)ethanol extract on motor dysfunction in a mouse model of Parkinson's disease (PD).
Methods: Eighty C57BL/6 male mice were randomly divided into five groups: control group, model group, levodopa group (positive control group), low-dose GP group, and high-dose GP group, with 16 mice per group. The PD model was induced by injection of 6-hydroxydopamine into the substantia nigra pars reticulata of the mice. Two weeks after 6-hydroxydopamine, positive control group received intraperitoneal injection of levodopa 10 mg·kg-1·d-1, while low-dose GP and high-dose GP groups received GP extract 100 or 200 mg·kg-1·d-1 orally for three weeks. After a 3-week-treatment, the effects of GP on motor dysfunction in 6-hydroxydopamine-induced PD were assessed using open field and CatWalk gait tests, while the effects on muscle strength were evaluated by forelimb grip strength. Immunofluorescence staining was used to detect the number of tyrosine hydroxylase (TH) positive neurons. The levels of dopamine and serotonin in the midbrain were determined by enzyme-linked immunosorbent assay. In addition, Western blotting was performed to detect the expression of mitogen-activated protein kinase (MAPK) family proteins such as p-extracellular signal-regulated kinase (ERK)1/2, p-p38 and p-c-Jun N-terminal kinase (JNK)1/2, and mitochondrial apoptosis pathway proteins such as B-cell lymphoma (Bcl)-2, Bcl-2 associated X protein (Bax), and cleaved-cysteine aspartic acid specific protease (caspase)-3.
Results: Behavioral experiments showed that GP significantly improved the spontaneous activity and motor coordination of PD mice (P<0.05). The forelimb grip strength was also increased by GP treatment (P<0.05), compared to the PD model group. In addition, compared with the model group, the number of TH-positive neurons in substantia nigra pars reticulata region, the levels of dopamine and serotonin in midbrain and the expression of p-ERK1/2 were significantly increased by GP treatment (all P<0.05), whereas the expression of p-p38 and p-JNK1/2, the ratio of Bax/Bcl-2 and cleaved-caspase-3/caspase-3 were significantly decreased (all P<0.05).
Conclusions: The results indicate that GP might increase dopamine and serotonin levels in the midbrain and promote the survival of dopaminergic neurons in substantia nigra pars reticulata by regulating the expression of phosphorylation of MAPK family proteins and the expression of mitochondrial apoptosis-related proteins, thereby ameliorating motor deficits in PD mice.