Restriction of mitochondrial oxidation of glutamine or fatty acids enhances intracellular growth of Mycobacterium abscessus in macrophages.

IF 5.5 1区 农林科学 Q1 IMMUNOLOGY
Virulence Pub Date : 2025-12-01 Epub Date: 2025-01-19 DOI:10.1080/21505594.2025.2454323
Ho Won Kim, Ji Won Lee, Hoe Sun Yoon, Hwan-Woo Park, Young Ik Lee, Sung Ki Lee, Jake Whang, Jong-Seok Kim
{"title":"Restriction of mitochondrial oxidation of glutamine or fatty acids enhances intracellular growth of <i>Mycobacterium abscessus</i> in macrophages.","authors":"Ho Won Kim, Ji Won Lee, Hoe Sun Yoon, Hwan-Woo Park, Young Ik Lee, Sung Ki Lee, Jake Whang, Jong-Seok Kim","doi":"10.1080/21505594.2025.2454323","DOIUrl":null,"url":null,"abstract":"<p><p><i>Mycobacterium abscessus</i> (Mab), a nontuberculous mycobacterium, is increasing in prevalence worldwide and causes treatment-refractory pulmonary diseases. However, how Mab rewires macrophage energy metabolism to facilitate its survival is poorly understood. We compared the metabolic profiles of murine bone marrow-derived macrophages (BMDMs) infected with smooth (S)- and rough (R)-type Mab using extracellular flux technology. Mab infection shifted BMDMs towards a more energetic phenotype, marked by increased oxidative phosphorylation (OXPHOS) and glycolysis, with a significantly greater enhancement in OXPHOS. This metabolic adaptation was characterized by enhanced ATP production rates, particularly in cells infected with S-type Mab, highlighting OXPHOS as a key energy source. Notably, Mab infection also modulated mitochondrial substrate preferences, increasing fatty acid oxidation capabilities while revealing significant changes in glutamine dependency and flexibility. R-type Mab infections exhibited a marked decrease in glutamine reliance but enhanced metabolic flexibility and capacity. Furthermore, targeting metabolic pathways related to glutamine and fatty acid oxidation exacerbated Mab growth within macrophages, suggesting these pathways play a protective role against infection. These insights advance our understanding of Mab's impact on host cell metabolism and propose a novel avenue for therapeutic intervention. By manipulating host mitochondrial metabolism, we identify a potential host-directed therapeutic strategy against Mab, offering a promising alternative to conventional treatments beleaguered by drug resistance. This study underscores the importance of exploring metabolic interventions to combat Mab infection, paving the way for innovative approaches in the fight against this formidable pathogen.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":"16 1","pages":"2454323"},"PeriodicalIF":5.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749347/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virulence","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21505594.2025.2454323","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mycobacterium abscessus (Mab), a nontuberculous mycobacterium, is increasing in prevalence worldwide and causes treatment-refractory pulmonary diseases. However, how Mab rewires macrophage energy metabolism to facilitate its survival is poorly understood. We compared the metabolic profiles of murine bone marrow-derived macrophages (BMDMs) infected with smooth (S)- and rough (R)-type Mab using extracellular flux technology. Mab infection shifted BMDMs towards a more energetic phenotype, marked by increased oxidative phosphorylation (OXPHOS) and glycolysis, with a significantly greater enhancement in OXPHOS. This metabolic adaptation was characterized by enhanced ATP production rates, particularly in cells infected with S-type Mab, highlighting OXPHOS as a key energy source. Notably, Mab infection also modulated mitochondrial substrate preferences, increasing fatty acid oxidation capabilities while revealing significant changes in glutamine dependency and flexibility. R-type Mab infections exhibited a marked decrease in glutamine reliance but enhanced metabolic flexibility and capacity. Furthermore, targeting metabolic pathways related to glutamine and fatty acid oxidation exacerbated Mab growth within macrophages, suggesting these pathways play a protective role against infection. These insights advance our understanding of Mab's impact on host cell metabolism and propose a novel avenue for therapeutic intervention. By manipulating host mitochondrial metabolism, we identify a potential host-directed therapeutic strategy against Mab, offering a promising alternative to conventional treatments beleaguered by drug resistance. This study underscores the importance of exploring metabolic interventions to combat Mab infection, paving the way for innovative approaches in the fight against this formidable pathogen.

限制线粒体氧化谷氨酰胺或脂肪酸可促进巨噬细胞内脓肿分枝杆菌的生长。
脓肿分枝杆菌(Mab)是一种非结核分枝杆菌,在世界范围内的患病率正在上升,并导致难治性肺部疾病。然而,Mab是如何重新连接巨噬细胞的能量代谢以促进其存活的,人们知之甚少。我们使用细胞外通量技术比较了小鼠骨髓源性巨噬细胞(bmdm)感染光滑型(S)和粗糙型(R)单抗后的代谢谱。单抗感染使BMDMs转向更有活力的表型,其特征是氧化磷酸化(OXPHOS)和糖酵解增加,其中OXPHOS的增强明显更大。这种代谢适应的特点是ATP产生率提高,特别是在被s型单抗感染的细胞中,这表明OXPHOS是关键的能量来源。值得注意的是,Mab感染还调节了线粒体底物偏好,增加了脂肪酸氧化能力,同时揭示了谷氨酰胺依赖性和灵活性的显著变化。r型单抗感染表现出谷氨酰胺依赖性显著降低,但代谢灵活性和能力增强。此外,靶向与谷氨酰胺和脂肪酸氧化相关的代谢途径可促进巨噬细胞内Mab的生长,表明这些途径对感染具有保护作用。这些见解促进了我们对Mab对宿主细胞代谢影响的理解,并为治疗干预提供了新的途径。通过操纵宿主线粒体代谢,我们确定了一种潜在的针对Mab的宿主定向治疗策略,为被耐药性困扰的传统治疗提供了一种有希望的替代方案。这项研究强调了探索代谢干预对抗单克隆抗体感染的重要性,为对抗这种强大病原体的创新方法铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Virulence
Virulence IMMUNOLOGY-MICROBIOLOGY
CiteScore
9.20
自引率
1.90%
发文量
123
审稿时长
6-12 weeks
期刊介绍: Virulence is a fully open access peer-reviewed journal. All articles will (if accepted) be available for anyone to read anywhere, at any time immediately on publication. Virulence is the first international peer-reviewed journal of its kind to focus exclusively on microbial pathogenicity, the infection process and host-pathogen interactions. To address the new infectious challenges, emerging infectious agents and antimicrobial resistance, there is a clear need for interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信