{"title":"Exosomal miR-27a-5p attenuates inflammation through Toll-like receptor 7 in foodborne Salmonella infections","authors":"Mingjuan Qu , Shengfa Su , Linlin Jiang , Xin Yu , Jianlong Zhang , Hongwei Zhu , Kexue Han , Xingxiao Zhang","doi":"10.1016/j.vetmic.2025.110394","DOIUrl":null,"url":null,"abstract":"<div><div><em>Salmonella</em> is a common food-borne pathogen that is highly pathogenic and infectious, causing serious harm to livestock breeding and food safety. Uncovering the mechanisms of <em>Salmonella</em> infection and immune evasion can effectively prevent <em>Salmonella</em> contamination of livestock and poultry food. Here, small RNA sequencing results showed that exosomes produced by naïve murine macrophages RAW 264.7 cells contained a unique enrichment of a set of microRNAs (miRNAs) after <em>Salmonella</em> infection. Quantitative real-time polymerase chain reaction (qPCR) analysis verified that the tested miRNA (i.e. miR-27a-5p, miR-92a-1-5p and miR-1249-5p) showed similar expression patterns, consistent with small RNA sequencing data. TargetScan database predicted that the most promising targets for the differentially expressed miRNAs were abundant in the immune system, infectious diseases, and signal transduction pathways. Dual-luciferase reporter assays confirmed that Toll-like receptor 7 (TLR7) was the target of miR-27a-5p. Western blotting and enzyme-linked immunosorbent assay (ELISA) results revealed that overexpression of miR-27a-5p suppressed inflammation by targeting TLR7/nuclear factor kappa-B (NF-κB) signaling pathway and leading interleukin-6 (IL-6) and IL-1β cytokines slightly reduction in recipient macrophages, suggesting that exosomal miR-27a-5p uptake by naïve macrophages may inhibit pro-inflammatory macrophage differentiation. Therefore, these results contribute to our systematic understanding of the mechanism of exosomal miRNA in <em>Salmonella</em> infection, providing a potential target for preventing immune escape from <em>Salmonella</em>.</div></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"302 ","pages":"Article 110394"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037811352500029X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Salmonella is a common food-borne pathogen that is highly pathogenic and infectious, causing serious harm to livestock breeding and food safety. Uncovering the mechanisms of Salmonella infection and immune evasion can effectively prevent Salmonella contamination of livestock and poultry food. Here, small RNA sequencing results showed that exosomes produced by naïve murine macrophages RAW 264.7 cells contained a unique enrichment of a set of microRNAs (miRNAs) after Salmonella infection. Quantitative real-time polymerase chain reaction (qPCR) analysis verified that the tested miRNA (i.e. miR-27a-5p, miR-92a-1-5p and miR-1249-5p) showed similar expression patterns, consistent with small RNA sequencing data. TargetScan database predicted that the most promising targets for the differentially expressed miRNAs were abundant in the immune system, infectious diseases, and signal transduction pathways. Dual-luciferase reporter assays confirmed that Toll-like receptor 7 (TLR7) was the target of miR-27a-5p. Western blotting and enzyme-linked immunosorbent assay (ELISA) results revealed that overexpression of miR-27a-5p suppressed inflammation by targeting TLR7/nuclear factor kappa-B (NF-κB) signaling pathway and leading interleukin-6 (IL-6) and IL-1β cytokines slightly reduction in recipient macrophages, suggesting that exosomal miR-27a-5p uptake by naïve macrophages may inhibit pro-inflammatory macrophage differentiation. Therefore, these results contribute to our systematic understanding of the mechanism of exosomal miRNA in Salmonella infection, providing a potential target for preventing immune escape from Salmonella.
期刊介绍:
Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal.
Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge.
Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.