{"title":"Spatiotemporal variation in biomass abundance of different algal species in Lake Hulun using machine learning and Sentinel-3 images.","authors":"Zhaojiang Yan, Chong Fang, Kaishan Song, Xiangyu Wang, Zhidan Wen, Yingxin Shang, Hui Tao, Yunfeng Lyu","doi":"10.1038/s41598-025-87338-4","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change and human activities affect the biomass of different algal and the succession of dominant species. In the past, phytoplankton phyla inversion has been focused on oceanic and continental shelf waters, while phytoplankton phyla inversion in inland lakes and reservoirs is still in the initial and exploratory stage, and the research results are relatively few. Especially for mid-to-high latitude lakes, the research is even more blank. Therefore, this study proposes a machine learning method based on OLCI/Sentinel-3 satellite imagery to retrieve algal biomass abundance. Remote sensing models were developed to estimate the biomass abundance of three major algal groups: Cyanophyta, Chlorophyta, and Bacillariophyta. This study compared and evaluated 6 commonly used machine learning models, including extreme gradient boosting (XGBoost), support vector regression (SVR), backpropagation neural network (BP), gradient boosting decision tree (GBDT), random forest (RF), and categorical boosting (CatBoost). The results indicated that XGBoost exhibited the highest accuracy (R<sup>2</sup> = 0.92, RMSE = 1.78%, MAPE = 9.96%) in estimating Cyanophyta's biomass abundance. The RF model demonstrated the highest accuracy for estimating Chlorophyta's biomass abundance (R<sup>2</sup> = 0.72, RMSE = 6.57%, MAPE = 50.8%), while the GBDT model exhibited the highest accuracy for estimating Bacillariophyta's biomass abundance (R<sup>2</sup> = 0.9, RMSE = 4.66%, MAPE = 47.87%). The models were subsequently applied to all cloud-free OLCI images from Hulun Lake during the ice-free periods from 2016 to 2023, producing spatiotemporal distribution maps of the different phytoplankton biomass abundance. Cyanophyta dominated the biomass abundance (44.62 ± 3.47%), followed by Bacillariophyta (36.35 ± 2.68%), and Chlorophyta had the lowest proportion (10.42 ± 1.08%). Together, these three algae groups constituted 91.4 ± 1.55% of all phytoplankton in Hulun Lake. Significant annual variations in the biomass abundance of Cyanophyta and Bacillariophyta were observed, whereas those of Chlorophyta remained stable. Additionally, this study examined the effects of climatic factors and water quality parameters on the biomass abundance of algae. The findings suggest that temperature, wind speed, and atmospheric pressure are critical factors influencing the biomass abundance of the different algae groups. This study not only fills the gaps in the related field, but also provides a new method for monitoring algae, as well as a strong support for realizing the goals of sustainable management of water resources and ecological protection.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"2739"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751342/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-87338-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change and human activities affect the biomass of different algal and the succession of dominant species. In the past, phytoplankton phyla inversion has been focused on oceanic and continental shelf waters, while phytoplankton phyla inversion in inland lakes and reservoirs is still in the initial and exploratory stage, and the research results are relatively few. Especially for mid-to-high latitude lakes, the research is even more blank. Therefore, this study proposes a machine learning method based on OLCI/Sentinel-3 satellite imagery to retrieve algal biomass abundance. Remote sensing models were developed to estimate the biomass abundance of three major algal groups: Cyanophyta, Chlorophyta, and Bacillariophyta. This study compared and evaluated 6 commonly used machine learning models, including extreme gradient boosting (XGBoost), support vector regression (SVR), backpropagation neural network (BP), gradient boosting decision tree (GBDT), random forest (RF), and categorical boosting (CatBoost). The results indicated that XGBoost exhibited the highest accuracy (R2 = 0.92, RMSE = 1.78%, MAPE = 9.96%) in estimating Cyanophyta's biomass abundance. The RF model demonstrated the highest accuracy for estimating Chlorophyta's biomass abundance (R2 = 0.72, RMSE = 6.57%, MAPE = 50.8%), while the GBDT model exhibited the highest accuracy for estimating Bacillariophyta's biomass abundance (R2 = 0.9, RMSE = 4.66%, MAPE = 47.87%). The models were subsequently applied to all cloud-free OLCI images from Hulun Lake during the ice-free periods from 2016 to 2023, producing spatiotemporal distribution maps of the different phytoplankton biomass abundance. Cyanophyta dominated the biomass abundance (44.62 ± 3.47%), followed by Bacillariophyta (36.35 ± 2.68%), and Chlorophyta had the lowest proportion (10.42 ± 1.08%). Together, these three algae groups constituted 91.4 ± 1.55% of all phytoplankton in Hulun Lake. Significant annual variations in the biomass abundance of Cyanophyta and Bacillariophyta were observed, whereas those of Chlorophyta remained stable. Additionally, this study examined the effects of climatic factors and water quality parameters on the biomass abundance of algae. The findings suggest that temperature, wind speed, and atmospheric pressure are critical factors influencing the biomass abundance of the different algae groups. This study not only fills the gaps in the related field, but also provides a new method for monitoring algae, as well as a strong support for realizing the goals of sustainable management of water resources and ecological protection.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.