Finding polarized communities and tracking information diffusion on Twitter: a network approach on the Irish Abortion Referendum.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Royal Society Open Science Pub Date : 2025-01-15 eCollection Date: 2025-01-01 DOI:10.1098/rsos.240454
Caroline B Pena, Pádraig MacCarron, David J P O'Sullivan
{"title":"Finding polarized communities and tracking information diffusion on Twitter: a network approach on the Irish Abortion Referendum.","authors":"Caroline B Pena, Pádraig MacCarron, David J P O'Sullivan","doi":"10.1098/rsos.240454","DOIUrl":null,"url":null,"abstract":"<p><p>The analysis of social networks enables the understanding of social interactions, polarization of ideas and the spread of information, and therefore plays an important role in society. We use Twitter data-as it is a popular venue for the expression of opinion and dissemination of information-to identify opposing sides of a debate and, importantly, to observe how information spreads between these groups in our current polarized climate. To achieve this, we collected over 688 000 tweets from the Irish Abortion Referendum of 2018 to build a conversation network from users' mentions with sentiment-based homophily. From this network, community detection methods allow us to isolate yes- or no-aligned supporters with high accuracy (90.9%). We supplement this by tracking how information cascades spread via over 31 000 retweet cascades. We found that very little information spread between polarized communities. This provides a valuable methodology for extracting and studying information diffusion on large networks by isolating ideologically polarized groups and exploring the propagation of information within and between these groups.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 1","pages":"240454"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732405/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.240454","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The analysis of social networks enables the understanding of social interactions, polarization of ideas and the spread of information, and therefore plays an important role in society. We use Twitter data-as it is a popular venue for the expression of opinion and dissemination of information-to identify opposing sides of a debate and, importantly, to observe how information spreads between these groups in our current polarized climate. To achieve this, we collected over 688 000 tweets from the Irish Abortion Referendum of 2018 to build a conversation network from users' mentions with sentiment-based homophily. From this network, community detection methods allow us to isolate yes- or no-aligned supporters with high accuracy (90.9%). We supplement this by tracking how information cascades spread via over 31 000 retweet cascades. We found that very little information spread between polarized communities. This provides a valuable methodology for extracting and studying information diffusion on large networks by isolating ideologically polarized groups and exploring the propagation of information within and between these groups.

寻找两极分化的社区并追踪Twitter上的信息传播:爱尔兰堕胎公投的网络方法。
对社会网络的分析使人们能够理解社会互动、思想的两极分化和信息的传播,因此在社会中起着重要的作用。我们使用Twitter数据——它是一个表达意见和传播信息的热门场所——来识别辩论的对立双方,更重要的是,观察在当前两极分化的气候下,信息是如何在这些群体之间传播的。为了实现这一目标,我们从2018年爱尔兰堕胎公投中收集了超过68.8万条推文,以建立一个基于情感同质性的用户提及的对话网络。从这个网络中,社区检测方法使我们能够以很高的准确率(90.9%)分离出支持或不支持的支持者。我们通过跟踪信息级联如何通过超过31000个转发级联传播来补充这一点。我们发现,在两极分化的社区之间,很少有信息传播。这为提取和研究大型网络上的信息扩散提供了一种有价值的方法,方法是隔离意识形态极化的群体,并探索这些群体内部和群体之间的信息传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信