{"title":"Peri-centrosomal localization of small interfering RNAs in C. elegans.","authors":"Qile Jin, Xuezhu Feng, Minjie Hong, Ke Wang, Xiangyang Chen, Jiewei Cheng, Yan Kuang, Xiaoyue Si, Mingjing Xu, Xinya Huang, Shouhong Guang, Chengming Zhu","doi":"10.1007/s11427-024-2818-7","DOIUrl":null,"url":null,"abstract":"<p><p>The centrosome is the microtubule-organizing center and a crucial part of cell division. Centrosomal RNAs (cnRNAs) have been reported to enable precise spatiotemporal control of gene expression during cell division in many species. Whether and how cnRNAs exist in C. elegans are unclear. Here, using the nuclear RNAi Argonaute protein NRDE-3 as a reporter, we observed potential peri-centrosome localized small interfering (si)RNAs in C. elegans. NRDE-3 was previously shown to associate with pre-mRNAs and pre-rRNAs via a process involving the presence of complementary siRNAs. We generated a GFP-NRDE-3 knock-in transgene through CRISPR/Cas9 technology and observed that NRDE-3 formed peri-centrosomal foci neighboring the tubulin protein TBB-2, other centriole proteins and pericentriolar material (PCM) components in C. elegans embryos. The peri-centrosomal accumulation of NRDE-3 depends on RNA-dependent RNA polymerase (RdRP)-synthesized 22G siRNAs and the PAZ domain of NRDE-3, which is essential for siRNA binding. Mutation of eri-1, ergo-1, or drh-3 significantly increased the percentage of pericentrosome-enriched NRDE-3. At the metaphase of the cell cycle, NRDE-3 was enriched in both the peri-centrosomal region and the spindle. Moreover, the integrity of centriole proteins and pericentriolar material (PCM) components is also required for the peri-centrosomal accumulation of NRDE-3. Therefore, we concluded that siRNAs could accumulate in the pericentrosomal region in C. elegans and suggested that the peri-centrosomal region may also be a platform for RNAi-mediated gene regulation.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":"895-911"},"PeriodicalIF":8.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11427-024-2818-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The centrosome is the microtubule-organizing center and a crucial part of cell division. Centrosomal RNAs (cnRNAs) have been reported to enable precise spatiotemporal control of gene expression during cell division in many species. Whether and how cnRNAs exist in C. elegans are unclear. Here, using the nuclear RNAi Argonaute protein NRDE-3 as a reporter, we observed potential peri-centrosome localized small interfering (si)RNAs in C. elegans. NRDE-3 was previously shown to associate with pre-mRNAs and pre-rRNAs via a process involving the presence of complementary siRNAs. We generated a GFP-NRDE-3 knock-in transgene through CRISPR/Cas9 technology and observed that NRDE-3 formed peri-centrosomal foci neighboring the tubulin protein TBB-2, other centriole proteins and pericentriolar material (PCM) components in C. elegans embryos. The peri-centrosomal accumulation of NRDE-3 depends on RNA-dependent RNA polymerase (RdRP)-synthesized 22G siRNAs and the PAZ domain of NRDE-3, which is essential for siRNA binding. Mutation of eri-1, ergo-1, or drh-3 significantly increased the percentage of pericentrosome-enriched NRDE-3. At the metaphase of the cell cycle, NRDE-3 was enriched in both the peri-centrosomal region and the spindle. Moreover, the integrity of centriole proteins and pericentriolar material (PCM) components is also required for the peri-centrosomal accumulation of NRDE-3. Therefore, we concluded that siRNAs could accumulate in the pericentrosomal region in C. elegans and suggested that the peri-centrosomal region may also be a platform for RNAi-mediated gene regulation.
期刊介绍:
Science China Life Sciences is a scholarly journal co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and it is published by Science China Press. The journal is dedicated to publishing high-quality, original research findings in both basic and applied life science research.