Harnessing the Streptomyces-originating type I-E CRISPR/Cas system for efficient genome editing in Streptomyces.

IF 8 2区 生物学 Q1 BIOLOGY
Science China Life Sciences Pub Date : 2025-04-01 Epub Date: 2025-01-14 DOI:10.1007/s11427-024-2677-4
Yuhui Xie, Xiaoyan Liu, Tingting Wu, Yunzi Luo
{"title":"Harnessing the Streptomyces-originating type I-E CRISPR/Cas system for efficient genome editing in Streptomyces.","authors":"Yuhui Xie, Xiaoyan Liu, Tingting Wu, Yunzi Luo","doi":"10.1007/s11427-024-2677-4","DOIUrl":null,"url":null,"abstract":"<p><p>Since their discovery, CRISPR/Cas systems have significantly expanded the genetic toolbox, aiding in the exploration and enhanced production of natural products across various microbes. Among these, class 2 CRISPR/Cas systems are simpler and more broadly used, but they frequently fail to function effectively in many Streptomyces strains. In this study, we present an engineered class 1 type I CRISPR/Cas system derived from Streptomyces avermitilis, which enables efficient gene editing in phylogenetically distant Streptomyces strains. Through a plasmid interference assay, we identified the effective protospacer adjacent motif as 5'-AAN-3'. Utilizing this system, we achieved targeted chromosomal deletions ranging from 8 bp to 100 kb, with efficiencies exceeding 92%. We further utilized this system to insert DNA fragments into different Streptomyces genomes, facilitating the heterologous expression of exogenous genes and the activation of endogenous natural product biosynthetic gene clusters. Overall, we established a type I CRISPR/Cas-based gene-editing methodology that significantly advances the exploration of Streptomyces, known for their rich natural product resources. This is the first report of a gene editing tool developed based on the endogenous class 1 type I CRISPR/Cas system in Streptomyces spp. Our work enriches the Streptomyces gene manipulation toolbox and advances the discovery of valuable natural products within these organisms.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":"1174-1182"},"PeriodicalIF":8.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11427-024-2677-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Since their discovery, CRISPR/Cas systems have significantly expanded the genetic toolbox, aiding in the exploration and enhanced production of natural products across various microbes. Among these, class 2 CRISPR/Cas systems are simpler and more broadly used, but they frequently fail to function effectively in many Streptomyces strains. In this study, we present an engineered class 1 type I CRISPR/Cas system derived from Streptomyces avermitilis, which enables efficient gene editing in phylogenetically distant Streptomyces strains. Through a plasmid interference assay, we identified the effective protospacer adjacent motif as 5'-AAN-3'. Utilizing this system, we achieved targeted chromosomal deletions ranging from 8 bp to 100 kb, with efficiencies exceeding 92%. We further utilized this system to insert DNA fragments into different Streptomyces genomes, facilitating the heterologous expression of exogenous genes and the activation of endogenous natural product biosynthetic gene clusters. Overall, we established a type I CRISPR/Cas-based gene-editing methodology that significantly advances the exploration of Streptomyces, known for their rich natural product resources. This is the first report of a gene editing tool developed based on the endogenous class 1 type I CRISPR/Cas system in Streptomyces spp. Our work enriches the Streptomyces gene manipulation toolbox and advances the discovery of valuable natural products within these organisms.

利用链霉菌的I-E型CRISPR/Cas系统对链霉菌进行高效的基因组编辑。
自发现以来,CRISPR/Cas系统极大地扩展了遗传工具箱,帮助探索和增强了各种微生物的天然产物的生产。其中,2类CRISPR/Cas系统更简单,使用更广泛,但它们经常不能在许多链霉菌菌株中有效地发挥作用。在这项研究中,我们提出了一种来自阿维链霉菌的工程1类I型CRISPR/Cas系统,该系统能够对系统发育较远的链霉菌菌株进行有效的基因编辑。通过质粒干扰实验,我们确定了有效的原间隔邻近基序为5‘-AAN-3’。利用该系统,我们实现了从8 bp到100 kb的靶向染色体缺失,效率超过92%。我们进一步利用该系统将DNA片段插入链霉菌的不同基因组中,促进外源基因的异源表达和内源天然产物生物合成基因簇的激活。总的来说,我们建立了一种基于I型CRISPR/ cas的基因编辑方法,显著推进了对链霉菌的探索,链霉菌以其丰富的天然产物资源而闻名。这是基于链霉菌内源性1类I型CRISPR/Cas系统开发的基因编辑工具的第一篇报道,我们的工作丰富了链霉菌基因操作工具箱,并推动了这些生物中有价值的天然产物的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.10
自引率
8.80%
发文量
2907
审稿时长
3.2 months
期刊介绍: Science China Life Sciences is a scholarly journal co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and it is published by Science China Press. The journal is dedicated to publishing high-quality, original research findings in both basic and applied life science research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信