Two complementing in vivo selection systems based on CCA-trimming exonucleases as a tool to monitor, select and evaluate enzymatic features of tRNA nucleotidyltransferases.

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA Biology Pub Date : 2025-12-01 Epub Date: 2025-01-29 DOI:10.1080/15476286.2025.2453963
Karolin Wellner, Josefine Gnauck, Dorian Bernier, Stephan H Bernhart, Heike Betat, Mario Mörl
{"title":"Two complementing <i>in vivo</i> selection systems based on CCA-trimming exonucleases as a tool to monitor, select and evaluate enzymatic features of tRNA nucleotidyltransferases.","authors":"Karolin Wellner, Josefine Gnauck, Dorian Bernier, Stephan H Bernhart, Heike Betat, Mario Mörl","doi":"10.1080/15476286.2025.2453963","DOIUrl":null,"url":null,"abstract":"<p><p>tRNA nucleotidyltransferase represents a ubiquitous and essential activity that adds the indispensable CCA triplet to the 3'-end of tRNAs. To fulfill this function, the enzyme contains a set of highly conserved motifs whose coordinated interplay is crucial for the sequence-specific CCA polymerization. In the human enzyme, alterations within these regions have been shown to lead to the manifestation of disease. Recently, we developed an <i>in vivo</i> screening system that allows for the selection and analysis of tRNA nucleotidyltransferase variants by challenging terminal AMP incorporation into tRNA during induced RNase T-catalyzed CCA-decay. Here, we extend this method for screening of full CCA-end repair by utilizing the CCA-trimming activity of exonuclease LCCR4. To demonstrate the combined potential of these two <i>in vivo</i> selection systems, we applied a semi-rational library design to investigate the mode of operation of catalytically important motifs in the human CCA-adding enzyme. This approach revealed unexpected requirements for amino acid composition in two motifs and gives new insights into the mechanism of CCA addition. The data show the potential of these RNase-based screening systems, as they allow the detection of enzyme variations that would not have been identified by a conventional rational approach. Furthermore, the combination of both RNase T and LCCR4 systems can be used to investigate and dissect the effects of pathogenic mutations on C- and A-addition.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":" ","pages":"1-14"},"PeriodicalIF":3.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784652/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2025.2453963","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

tRNA nucleotidyltransferase represents a ubiquitous and essential activity that adds the indispensable CCA triplet to the 3'-end of tRNAs. To fulfill this function, the enzyme contains a set of highly conserved motifs whose coordinated interplay is crucial for the sequence-specific CCA polymerization. In the human enzyme, alterations within these regions have been shown to lead to the manifestation of disease. Recently, we developed an in vivo screening system that allows for the selection and analysis of tRNA nucleotidyltransferase variants by challenging terminal AMP incorporation into tRNA during induced RNase T-catalyzed CCA-decay. Here, we extend this method for screening of full CCA-end repair by utilizing the CCA-trimming activity of exonuclease LCCR4. To demonstrate the combined potential of these two in vivo selection systems, we applied a semi-rational library design to investigate the mode of operation of catalytically important motifs in the human CCA-adding enzyme. This approach revealed unexpected requirements for amino acid composition in two motifs and gives new insights into the mechanism of CCA addition. The data show the potential of these RNase-based screening systems, as they allow the detection of enzyme variations that would not have been identified by a conventional rational approach. Furthermore, the combination of both RNase T and LCCR4 systems can be used to investigate and dissect the effects of pathogenic mutations on C- and A-addition.

基于cca修饰外切酶的两种互补的体内选择系统,作为监测、选择和评估tRNA核苷酸转移酶酶学特征的工具。
tRNA核苷酸转移酶是一种普遍存在的必需活性,它将必不可少的CCA三重体添加到tRNA的3'端。为了实现这一功能,该酶包含一组高度保守的基序,这些基序的协调相互作用对于序列特异性CCA聚合至关重要。在人类的酶中,这些区域的改变已被证明会导致疾病的表现。最近,我们开发了一种体内筛选系统,通过在诱导RNase t催化的cca衰变过程中挑战末端AMP并入tRNA来选择和分析tRNA核苷酸转移酶变体。在这里,我们利用外切酶LCCR4的cca修剪活性,将这种方法扩展到cca末端完整修复的筛选。为了证明这两种体内选择系统的联合潜力,我们采用半理性文库设计来研究人类cca添加酶中催化重要基序的操作模式。该方法揭示了两个基序中氨基酸组成的意外要求,并为CCA加成的机制提供了新的见解。这些数据显示了这些基于rase的筛选系统的潜力,因为它们可以检测到传统的合理方法无法识别的酶变异。此外,RNase T和LCCR4系统的结合可用于研究和解剖致病突变对C-和Aaddition的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RNA Biology
RNA Biology 生物-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
82
审稿时长
1 months
期刊介绍: RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research. RNA Biology brings together a multidisciplinary community of scientists working in the areas of: Transcription and splicing Post-transcriptional regulation of gene expression Non-coding RNAs RNA localization Translation and catalysis by RNA Structural biology Bioinformatics RNA in disease and therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信