The TIFY transcription factor ZmJAZ13 enhances plant tolerance to drought and salt stress by interacting with ZmbHLH161 and ZmA0A1D6GLB9

IF 4.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shipeng Zhang , Dengyu Zheng , Yuqi Gao , Meng She , Zhongyi Wu , Yuncai Lu , Zhongbao Zhang
{"title":"The TIFY transcription factor ZmJAZ13 enhances plant tolerance to drought and salt stress by interacting with ZmbHLH161 and ZmA0A1D6GLB9","authors":"Shipeng Zhang ,&nbsp;Dengyu Zheng ,&nbsp;Yuqi Gao ,&nbsp;Meng She ,&nbsp;Zhongyi Wu ,&nbsp;Yuncai Lu ,&nbsp;Zhongbao Zhang","doi":"10.1016/j.plantsci.2025.112388","DOIUrl":null,"url":null,"abstract":"<div><div>The JAZ protein family, serving as a key negative regulator in the jasmonic acid signaling pathway, interacts with transcription factors to play an essential role in plant growth, development, and stress responses. However, minimal research has focused on the role of JAZ transcription factors in regulating the growth, development, and stress responses of maize. In this study, we cloned the JAZ gene <em>ZmJAZ13</em> from maize (<em>Zea mays</em> L.) and conducted a preliminary analysis of its biological function. <em>ZmJAZ13</em> was highly expressed in maize immature embryos and was induced by abiotic stress and plant hormone treatments. Y2H and BiFC assays revealed interactions between <em>ZmJAZ13</em> and <em>ZmbHLH161</em>, as well as <em>ZmA0A1D6GLB9</em>. Heterologous expression of <em>ZmJAZ13</em> in <em>Arabidopsis</em> significantly enhanced plant tolerance to drought and salt stress, increased chlorophyll content, decreased malondialdehyde content, and enhanced peroxidase activity. Under abiotic stress, heterologous expression of <em>ZmJAZ13</em> in <em>Arabidopsis</em> upregulated the expression levels of stress-related genes (<em>RD22</em>, <em>RD29-A</em>). Together, these results suggested that <em>ZmJAZ13</em> may respond to abiotic stress, providing a foundation for further investigation into the mechanism of action of <em>ZmJAZ13</em> in maize.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"352 ","pages":"Article 112388"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168945225000056","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The JAZ protein family, serving as a key negative regulator in the jasmonic acid signaling pathway, interacts with transcription factors to play an essential role in plant growth, development, and stress responses. However, minimal research has focused on the role of JAZ transcription factors in regulating the growth, development, and stress responses of maize. In this study, we cloned the JAZ gene ZmJAZ13 from maize (Zea mays L.) and conducted a preliminary analysis of its biological function. ZmJAZ13 was highly expressed in maize immature embryos and was induced by abiotic stress and plant hormone treatments. Y2H and BiFC assays revealed interactions between ZmJAZ13 and ZmbHLH161, as well as ZmA0A1D6GLB9. Heterologous expression of ZmJAZ13 in Arabidopsis significantly enhanced plant tolerance to drought and salt stress, increased chlorophyll content, decreased malondialdehyde content, and enhanced peroxidase activity. Under abiotic stress, heterologous expression of ZmJAZ13 in Arabidopsis upregulated the expression levels of stress-related genes (RD22, RD29-A). Together, these results suggested that ZmJAZ13 may respond to abiotic stress, providing a foundation for further investigation into the mechanism of action of ZmJAZ13 in maize.
TIFY转录因子ZmJAZ13通过与ZmbHLH161和ZmA0A1D6GLB9相互作用增强植物对干旱和盐胁迫的耐受性。
JAZ蛋白家族是茉莉酸信号通路的关键负调控蛋白,与转录因子相互作用,在植物生长发育和逆境响应中发挥重要作用。然而,很少有研究集中在JAZ转录因子在调节玉米生长、发育和胁迫反应中的作用。本研究从玉米(Zea mays L.)中克隆了JAZ基因ZmJAZ13,并对其生物学功能进行了初步分析。ZmJAZ13在玉米未成熟胚中高表达,受非生物胁迫和植物激素诱导。Y2H和BiFC检测显示ZmJAZ13和ZmbHLH161以及ZmA0A1D6GLB9之间存在相互作用。ZmJAZ13在拟南芥中的异源表达显著增强了植物对干旱和盐胁迫的耐受性,提高了叶绿素含量,降低了丙二醛含量,增强了过氧化物酶活性。在非生物胁迫下,异源表达ZmJAZ13可上调胁迫相关基因(RD22, RD29-A)的表达水平。以上结果提示,ZmJAZ13可能对非生物胁迫有响应,为进一步研究ZmJAZ13在玉米中的作用机制奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Science
Plant Science 生物-生化与分子生物学
CiteScore
9.10
自引率
1.90%
发文量
322
审稿时长
33 days
期刊介绍: Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment. Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.
文献相关原料
公司名称
产品信息
索莱宝
plants physiological indexes kit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信