{"title":"Adaptation optimizes sensory encoding for future stimuli.","authors":"Jiang Mao, Constantin A Rothkopf, Alan A Stocker","doi":"10.1371/journal.pcbi.1012746","DOIUrl":null,"url":null,"abstract":"<p><p>Sensory neurons continually adapt their response characteristics according to recent stimulus history. However, it is unclear how such a reactive process can benefit the organism. Here, we test the hypothesis that adaptation actually acts proactively in the sense that it optimally adjusts sensory encoding for future stimuli. We first quantified human subjects' ability to discriminate visual orientation under different adaptation conditions. Using an information theoretic analysis, we found that adaptation leads to a reallocation of coding resources such that encoding accuracy peaks at the mean orientation of the adaptor while total coding capacity remains constant. We then asked whether this characteristic change in encoding accuracy is predicted by the temporal statistics of natural visual input. Analyzing the retinal input of freely behaving human subjects showed that the distribution of local visual orientations in the retinal input stream indeed peaks at the mean orientation of the preceding input history (i.e., the adaptor). We further tested our hypothesis by analyzing the internal sensory representations of a recurrent neural network trained to predict the next frame of natural scene videos (PredNet). Simulating our human adaptation experiment with PredNet, we found that the network exhibited the same change in encoding accuracy as observed in human subjects. Taken together, our results suggest that adaptation-induced changes in encoding accuracy prepare the visual system for future stimuli.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 1","pages":"e1012746"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771873/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012746","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Sensory neurons continually adapt their response characteristics according to recent stimulus history. However, it is unclear how such a reactive process can benefit the organism. Here, we test the hypothesis that adaptation actually acts proactively in the sense that it optimally adjusts sensory encoding for future stimuli. We first quantified human subjects' ability to discriminate visual orientation under different adaptation conditions. Using an information theoretic analysis, we found that adaptation leads to a reallocation of coding resources such that encoding accuracy peaks at the mean orientation of the adaptor while total coding capacity remains constant. We then asked whether this characteristic change in encoding accuracy is predicted by the temporal statistics of natural visual input. Analyzing the retinal input of freely behaving human subjects showed that the distribution of local visual orientations in the retinal input stream indeed peaks at the mean orientation of the preceding input history (i.e., the adaptor). We further tested our hypothesis by analyzing the internal sensory representations of a recurrent neural network trained to predict the next frame of natural scene videos (PredNet). Simulating our human adaptation experiment with PredNet, we found that the network exhibited the same change in encoding accuracy as observed in human subjects. Taken together, our results suggest that adaptation-induced changes in encoding accuracy prepare the visual system for future stimuli.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.