{"title":"The molecular mechanism of transforming red light signal to (E)-β-caryophyllene biosynthesis in Arabidopsis.","authors":"Chuanjia Xu, Xin Wang, Malakkhanim Mehraliyeva, Jia Sun, Fangfang Chen, Changfu Li, Zhengqin Xu, Nan Tang, Yansheng Zhang","doi":"10.1111/ppl.70065","DOIUrl":null,"url":null,"abstract":"<p><p>It is known that red light irradiation enhances the biosynthesis of (E)-β-caryophyllene in plants. However, the underlying mechanism connecting red light to (E)-β-caryophyllene biosynthesis remains elusive. This study reveals a molecular cascade involving the phyB-PIF4-MYC2 module, which regulates (E)-β-caryophyllene biosynthesis in response to the red light signal in Arabidopsis thaliana. In this module, phyB positively regulates (E)-β-caryophyllene biosynthesis under red light, whereas PIF4 negatively regulates it; both regulations require the involvement of MYC2, a transcription factor that can bind directly to the promoter of the TPS21 gene which encodes (E)-β-caryophyllene synthase. Importantly, protein-protein and protein-DNA interaction assays show that PIF4 reduces the binding affinity of MYC2 to the TPS21 promoter through direct interaction with MYC2. We propose that the phyB-PIF4-MYC2 module represents a universal mechanism linking red light to sesquiterpene biosynthesis in plants.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70065"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70065","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
It is known that red light irradiation enhances the biosynthesis of (E)-β-caryophyllene in plants. However, the underlying mechanism connecting red light to (E)-β-caryophyllene biosynthesis remains elusive. This study reveals a molecular cascade involving the phyB-PIF4-MYC2 module, which regulates (E)-β-caryophyllene biosynthesis in response to the red light signal in Arabidopsis thaliana. In this module, phyB positively regulates (E)-β-caryophyllene biosynthesis under red light, whereas PIF4 negatively regulates it; both regulations require the involvement of MYC2, a transcription factor that can bind directly to the promoter of the TPS21 gene which encodes (E)-β-caryophyllene synthase. Importantly, protein-protein and protein-DNA interaction assays show that PIF4 reduces the binding affinity of MYC2 to the TPS21 promoter through direct interaction with MYC2. We propose that the phyB-PIF4-MYC2 module represents a universal mechanism linking red light to sesquiterpene biosynthesis in plants.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.