Buming Dong, Shaoyu Lang, Yongmei Gu, Xin Liu, Xingshun Song
{"title":"Identification of the bHLH gene family and functional analysis of ChMYC2 in drought stress of Cerasus humilis.","authors":"Buming Dong, Shaoyu Lang, Yongmei Gu, Xin Liu, Xingshun Song","doi":"10.1016/j.plaphy.2025.109519","DOIUrl":null,"url":null,"abstract":"<p><p>The basic helix-loop-helix (bHLH) transcription factors (TFs) play a crucial regulatory role in the growth and development of plants, as well as in their response to environmental stresses. In this study, we identified 94 ChbHLHs from Cerasus humilis, an economically valuable tree native to northern China. We analyzed their evolutionary relationships, gene structures, chromosome distributions, promoter cis-regulatory elements, and collinearity. Our analysis revealed numerous cis-regulatory elements associated with phytohormone responses and abiotic stress within the upstream promoter sequences of ChbHLH genes. The transcriptome results indicated that 84 ChbHLHs exhibited differential expression under drought conditions. Among those with upregulated expression levels, we selected ChMYC2 (ChbHLH93) for further investigation. Overexpressing ChMYC2 in Arabidopsis thaliana led to significantly elevated expression of drought-responsive genes compared to wild-type (WT) plants, resulting in enhanced drought resistance. Furthermore, we identified a gene, ChABI5 (ABA-insensitive 5), which interacts with ChMYC2. This study provides valuable genetic resources for future cultivation efforts aimed at developing stress-resistant and economically viable trees.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109519"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2025.109519","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The basic helix-loop-helix (bHLH) transcription factors (TFs) play a crucial regulatory role in the growth and development of plants, as well as in their response to environmental stresses. In this study, we identified 94 ChbHLHs from Cerasus humilis, an economically valuable tree native to northern China. We analyzed their evolutionary relationships, gene structures, chromosome distributions, promoter cis-regulatory elements, and collinearity. Our analysis revealed numerous cis-regulatory elements associated with phytohormone responses and abiotic stress within the upstream promoter sequences of ChbHLH genes. The transcriptome results indicated that 84 ChbHLHs exhibited differential expression under drought conditions. Among those with upregulated expression levels, we selected ChMYC2 (ChbHLH93) for further investigation. Overexpressing ChMYC2 in Arabidopsis thaliana led to significantly elevated expression of drought-responsive genes compared to wild-type (WT) plants, resulting in enhanced drought resistance. Furthermore, we identified a gene, ChABI5 (ABA-insensitive 5), which interacts with ChMYC2. This study provides valuable genetic resources for future cultivation efforts aimed at developing stress-resistant and economically viable trees.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.