Gene expression and mucilage adaptations to salinity in germination of extreme halophyte Schrenkiella parvula seeds.

IF 6.1 2区 生物学 Q1 PLANT SCIENCES
Keriman Şekerci, Nahoko Higashitani, Rengin Ozgur, Atsushi Higashitani, Ismail Turkan, Baris Uzilday
{"title":"Gene expression and mucilage adaptations to salinity in germination of extreme halophyte Schrenkiella parvula seeds.","authors":"Keriman Şekerci, Nahoko Higashitani, Rengin Ozgur, Atsushi Higashitani, Ismail Turkan, Baris Uzilday","doi":"10.1016/j.plaphy.2025.109517","DOIUrl":null,"url":null,"abstract":"<p><p>Salinization is a significant global issue causes irreversible damage to plants by reducing osmotic potential, inhibiting seed germination, and impeding water uptake. Seed germination, a crucial step towards the seedling stage is regulated by several hormones and genes, with the balance between abscisic acid and gibberellin being the key mechanism that either promotes or inhibits this process. Additionally, mucilage, a gelatinous substance, is known to provide protection against drought, herbivory, soil adhesion, and seed sinking. However, limited information is available on the structure and thickness of seed mucilage in halophytes under different salinity conditions. In this study, the mucilage structure of the extreme halophyte Schrenkiella parvula was compared with the glycophyte Arabidopsis thaliana in response to salinity. We found differences in the expression levels of genes such as ABI5, RGL2, DOG1, ENO2, and DHAR2, which are involved in seed germination and antioxidant activity, as well as in the mucilage structure of seeds of S. parvula and A. thaliana seeds at different salt concentrations. The responses of seed germination of S. parvula to salinity indicate that it is more salt-tolerant than A. thaliana. Additionally, it was found that S. parvula mucilage decreased under salt conditions but not under mannitol conditions, whereas in A. thaliana mucilage did not change under both conditions, which is one of the adaptation strategies of S. parvula to salt conditions. We believe that these fundamental analyzes will provide a foundation for future molecular and biochemical studies comparing the responses of crops and halophytes to salinity stress.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109517"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2025.109517","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Salinization is a significant global issue causes irreversible damage to plants by reducing osmotic potential, inhibiting seed germination, and impeding water uptake. Seed germination, a crucial step towards the seedling stage is regulated by several hormones and genes, with the balance between abscisic acid and gibberellin being the key mechanism that either promotes or inhibits this process. Additionally, mucilage, a gelatinous substance, is known to provide protection against drought, herbivory, soil adhesion, and seed sinking. However, limited information is available on the structure and thickness of seed mucilage in halophytes under different salinity conditions. In this study, the mucilage structure of the extreme halophyte Schrenkiella parvula was compared with the glycophyte Arabidopsis thaliana in response to salinity. We found differences in the expression levels of genes such as ABI5, RGL2, DOG1, ENO2, and DHAR2, which are involved in seed germination and antioxidant activity, as well as in the mucilage structure of seeds of S. parvula and A. thaliana seeds at different salt concentrations. The responses of seed germination of S. parvula to salinity indicate that it is more salt-tolerant than A. thaliana. Additionally, it was found that S. parvula mucilage decreased under salt conditions but not under mannitol conditions, whereas in A. thaliana mucilage did not change under both conditions, which is one of the adaptation strategies of S. parvula to salt conditions. We believe that these fundamental analyzes will provide a foundation for future molecular and biochemical studies comparing the responses of crops and halophytes to salinity stress.

极端盐生植物小叶雪莲种子萌发过程中基因表达及粘液对盐度的适应。
盐碱化是一个重要的全球性问题,通过降低渗透势、抑制种子萌发和阻碍水分吸收,对植物造成不可逆转的损害。种子萌发是走向幼苗阶段的关键一步,受多种激素和基因的调控,脱落酸和赤霉素之间的平衡是促进或抑制这一过程的关键机制。此外,粘液,一种胶状物质,已知提供保护,防止干旱,草食,土壤粘附和种子下沉。然而,关于盐生植物种子粘液在不同盐度条件下的结构和厚度的研究资料有限。本研究比较了极端盐生植物Schrenkiella parvula和糖生植物拟南芥(Arabidopsis thaliana)的粘液结构对盐度的响应。研究发现,不同盐浓度下,小苗和拟沙蚕种子中与种子萌发和抗氧化活性有关的ABI5、RGL2、DOG1、ENO2和DHAR2等基因的表达水平以及粘液结构存在差异。小叶拟南芥种子萌发对盐度的响应表明,小叶拟南芥比拟南芥具有更强的耐盐性。此外,研究还发现,在盐胁迫条件下,小叶孢粘液减少,甘露醇胁迫下没有变化,而拟南芥粘液在两种胁迫条件下都没有变化,这可能是小叶孢对盐胁迫的适应策略之一。我们相信这些基本分析将为今后比较作物和盐生植物对盐胁迫的响应的分子和生化研究提供基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信