{"title":"Gene expression and mucilage adaptations to salinity in germination of extreme halophyte Schrenkiella parvula seeds.","authors":"Keriman Şekerci, Nahoko Higashitani, Rengin Ozgur, Atsushi Higashitani, Ismail Turkan, Baris Uzilday","doi":"10.1016/j.plaphy.2025.109517","DOIUrl":null,"url":null,"abstract":"<p><p>Salinization is a significant global issue causes irreversible damage to plants by reducing osmotic potential, inhibiting seed germination, and impeding water uptake. Seed germination, a crucial step towards the seedling stage is regulated by several hormones and genes, with the balance between abscisic acid and gibberellin being the key mechanism that either promotes or inhibits this process. Additionally, mucilage, a gelatinous substance, is known to provide protection against drought, herbivory, soil adhesion, and seed sinking. However, limited information is available on the structure and thickness of seed mucilage in halophytes under different salinity conditions. In this study, the mucilage structure of the extreme halophyte Schrenkiella parvula was compared with the glycophyte Arabidopsis thaliana in response to salinity. We found differences in the expression levels of genes such as ABI5, RGL2, DOG1, ENO2, and DHAR2, which are involved in seed germination and antioxidant activity, as well as in the mucilage structure of seeds of S. parvula and A. thaliana seeds at different salt concentrations. The responses of seed germination of S. parvula to salinity indicate that it is more salt-tolerant than A. thaliana. Additionally, it was found that S. parvula mucilage decreased under salt conditions but not under mannitol conditions, whereas in A. thaliana mucilage did not change under both conditions, which is one of the adaptation strategies of S. parvula to salt conditions. We believe that these fundamental analyzes will provide a foundation for future molecular and biochemical studies comparing the responses of crops and halophytes to salinity stress.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109517"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2025.109517","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Salinization is a significant global issue causes irreversible damage to plants by reducing osmotic potential, inhibiting seed germination, and impeding water uptake. Seed germination, a crucial step towards the seedling stage is regulated by several hormones and genes, with the balance between abscisic acid and gibberellin being the key mechanism that either promotes or inhibits this process. Additionally, mucilage, a gelatinous substance, is known to provide protection against drought, herbivory, soil adhesion, and seed sinking. However, limited information is available on the structure and thickness of seed mucilage in halophytes under different salinity conditions. In this study, the mucilage structure of the extreme halophyte Schrenkiella parvula was compared with the glycophyte Arabidopsis thaliana in response to salinity. We found differences in the expression levels of genes such as ABI5, RGL2, DOG1, ENO2, and DHAR2, which are involved in seed germination and antioxidant activity, as well as in the mucilage structure of seeds of S. parvula and A. thaliana seeds at different salt concentrations. The responses of seed germination of S. parvula to salinity indicate that it is more salt-tolerant than A. thaliana. Additionally, it was found that S. parvula mucilage decreased under salt conditions but not under mannitol conditions, whereas in A. thaliana mucilage did not change under both conditions, which is one of the adaptation strategies of S. parvula to salt conditions. We believe that these fundamental analyzes will provide a foundation for future molecular and biochemical studies comparing the responses of crops and halophytes to salinity stress.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.