Deep Learning-Enabled Integration of Histology and Transcriptomics for Tissue Spatial Profile Analysis.

IF 11 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2025-01-17 eCollection Date: 2025-01-01 DOI:10.34133/research.0568
Yongxin Ge, Jiake Leng, Ziyang Tang, Kanran Wang, Kaicheng U, Sophia Meixuan Zhang, Sen Han, Yiyan Zhang, Jinxi Xiang, Sen Yang, Xiang Liu, Yi Song, Xiyue Wang, Yuchen Li, Junhan Zhao
{"title":"Deep Learning-Enabled Integration of Histology and Transcriptomics for Tissue Spatial Profile Analysis.","authors":"Yongxin Ge, Jiake Leng, Ziyang Tang, Kanran Wang, Kaicheng U, Sophia Meixuan Zhang, Sen Han, Yiyan Zhang, Jinxi Xiang, Sen Yang, Xiang Liu, Yi Song, Xiyue Wang, Yuchen Li, Junhan Zhao","doi":"10.34133/research.0568","DOIUrl":null,"url":null,"abstract":"<p><p>Spatially resolved transcriptomics enable comprehensive measurement of gene expression at subcellular resolution while preserving the spatial context of the tissue microenvironment. While deep learning has shown promise in analyzing SCST datasets, most efforts have focused on sequence data and spatial localization, with limited emphasis on leveraging rich histopathological insights from staining images. We introduce GIST, a deep learning-enabled gene expression and histology integration for spatial cellular profiling. GIST employs histopathology foundation models pretrained on millions of histology images to enhance feature extraction and a hybrid graph transformer model to integrate them with transcriptome features. Validated with datasets from human lung, breast, and colorectal cancers, GIST effectively reveals spatial domains and substantially improves the accuracy of segmenting the microenvironment after denoising transcriptomics data. This enhancement enables more accurate gene expression analysis and aids in identifying prognostic marker genes, outperforming state-of-the-art deep learning methods with a total improvement of up to 49.72%. GIST provides a generalizable framework for integrating histology with spatial transcriptome analysis, revealing novel insights into spatial organization and functional dynamics.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0568"},"PeriodicalIF":11.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739434/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0568","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Spatially resolved transcriptomics enable comprehensive measurement of gene expression at subcellular resolution while preserving the spatial context of the tissue microenvironment. While deep learning has shown promise in analyzing SCST datasets, most efforts have focused on sequence data and spatial localization, with limited emphasis on leveraging rich histopathological insights from staining images. We introduce GIST, a deep learning-enabled gene expression and histology integration for spatial cellular profiling. GIST employs histopathology foundation models pretrained on millions of histology images to enhance feature extraction and a hybrid graph transformer model to integrate them with transcriptome features. Validated with datasets from human lung, breast, and colorectal cancers, GIST effectively reveals spatial domains and substantially improves the accuracy of segmenting the microenvironment after denoising transcriptomics data. This enhancement enables more accurate gene expression analysis and aids in identifying prognostic marker genes, outperforming state-of-the-art deep learning methods with a total improvement of up to 49.72%. GIST provides a generalizable framework for integrating histology with spatial transcriptome analysis, revealing novel insights into spatial organization and functional dynamics.

深度学习支持组织空间剖面分析的组织学和转录组学集成。
空间分辨转录组学能够在亚细胞分辨率下全面测量基因表达,同时保留组织微环境的空间背景。虽然深度学习在分析SCST数据集方面显示出前景,但大多数工作都集中在序列数据和空间定位上,很少强调从染色图像中利用丰富的组织病理学见解。我们介绍GIST,一个深度学习支持的基因表达和组织学整合空间细胞谱。GIST使用对数百万张组织学图像进行预训练的组织病理学基础模型来增强特征提取,并使用混合图转换模型将其与转录组特征集成。通过对人类肺癌、乳腺癌和结直肠癌数据集的验证,GIST有效地揭示了空间域,并大大提高了转录组学数据去噪后分割微环境的准确性。这种增强能够更准确地进行基因表达分析,并有助于识别预后标记基因,优于最先进的深度学习方法,总改进率高达49.72%。GIST为整合组织学和空间转录组分析提供了一个可推广的框架,揭示了对空间组织和功能动力学的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信