James A Huntington, Alexandre Faille, Fatma Isik Ustok
{"title":"Serious issues with cryo-EM structures of human prothrombinase.","authors":"James A Huntington, Alexandre Faille, Fatma Isik Ustok","doi":"10.1098/rsob.240193","DOIUrl":null,"url":null,"abstract":"<p><p>Thrombin is generated from prothrombin through sequential cleavage at two sites by the enzyme complex prothrombinase, composed of a serine protease, factor (f) Xa and a cofactor, fVa, on phospholipid membranes. In a recent paper published in <i>Blood</i>, Ruben <i>et al</i>. (Ruben <i>et al</i>. 2022 <i>Blood</i> <b>139</b>, 3463-3473 (doi:10.1182/blood.2022015807)) reported a major breakthrough in the field: the cryogenic electron microscopy structures of human prothrombinase on nanodiscs at 5.5 Å resolution (7TPQ) and of a catalytically inert human prothrombinase with its substrate prothrombin in the absence of any membrane at 4.1 Å resolution (7TPP). As is the norm in structural biology, the original paper was reviewed without access to the coordinates and maps, and it was therefore not possible for referees to assess the validity of the structures or their interpretations. In this article, we provide a post hoc analysis of the quality of the reported coordinates and maps, and look closely at the claimed intermolecular contacts on which the supposed breakthrough depends. We demonstrate that the work is deeply flawed, with not a single claimed intermolecular contact supported by the map, and conclude that the two reported structures do not contain any useful information regarding the assembly or function of the prothrombinase complex.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"15 1","pages":"240193"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750407/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsob.240193","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Thrombin is generated from prothrombin through sequential cleavage at two sites by the enzyme complex prothrombinase, composed of a serine protease, factor (f) Xa and a cofactor, fVa, on phospholipid membranes. In a recent paper published in Blood, Ruben et al. (Ruben et al. 2022 Blood139, 3463-3473 (doi:10.1182/blood.2022015807)) reported a major breakthrough in the field: the cryogenic electron microscopy structures of human prothrombinase on nanodiscs at 5.5 Å resolution (7TPQ) and of a catalytically inert human prothrombinase with its substrate prothrombin in the absence of any membrane at 4.1 Å resolution (7TPP). As is the norm in structural biology, the original paper was reviewed without access to the coordinates and maps, and it was therefore not possible for referees to assess the validity of the structures or their interpretations. In this article, we provide a post hoc analysis of the quality of the reported coordinates and maps, and look closely at the claimed intermolecular contacts on which the supposed breakthrough depends. We demonstrate that the work is deeply flawed, with not a single claimed intermolecular contact supported by the map, and conclude that the two reported structures do not contain any useful information regarding the assembly or function of the prothrombinase complex.
期刊介绍:
Open Biology is an online journal that welcomes original, high impact research in cell and developmental biology, molecular and structural biology, biochemistry, neuroscience, immunology, microbiology and genetics.