CRISPRi-based screens in iAssembloids to elucidate neuron-glia interactions.

IF 14.7 1区 医学 Q1 NEUROSCIENCES
Emmy Li, Camila Benitez, Steven C Boggess, Mark Koontz, Indigo V L Rose, Delsy Martinez, Nina Dräger, Olivia M Teter, Avi J Samelson, Na'im Pierce, Erik M Ullian, Martin Kampmann
{"title":"CRISPRi-based screens in iAssembloids to elucidate neuron-glia interactions.","authors":"Emmy Li, Camila Benitez, Steven C Boggess, Mark Koontz, Indigo V L Rose, Delsy Martinez, Nina Dräger, Olivia M Teter, Avi J Samelson, Na'im Pierce, Erik M Ullian, Martin Kampmann","doi":"10.1016/j.neuron.2024.12.016","DOIUrl":null,"url":null,"abstract":"<p><p>The complexity of the human brain makes it challenging to understand the molecular mechanisms underlying brain function. Genome-wide association studies have uncovered variants associated with neurological phenotypes. Single-cell transcriptomics have provided descriptions of changes brain cells undergo during disease. However, these approaches do not establish molecular mechanism. To facilitate the scalable interrogation of causal molecular mechanisms in brain cell types, we developed a 3D co-culture system of induced pluripotent stem cell (iPSC)-derived neurons and glia, termed iAssembloids. Using iAssembloids, we ask how glial and neuronal cells interact to control neuronal death and survival. Our CRISPRi-based screens identified that GSK3β inhibits the protective NRF2-mediated oxidative stress response elicited by high neuronal activity. We then investigate the role of APOE-ε4, a risk variant for Alzheimer's disease, on neuronal survival. We find that APOE-ε4-expressing astrocytes may promote neuronal hyperactivity as compared with APOE-ε3-expressing astrocytes. This platform allows for the unbiased identification of mechanisms of neuron-glia cell interactions.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2024.12.016","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The complexity of the human brain makes it challenging to understand the molecular mechanisms underlying brain function. Genome-wide association studies have uncovered variants associated with neurological phenotypes. Single-cell transcriptomics have provided descriptions of changes brain cells undergo during disease. However, these approaches do not establish molecular mechanism. To facilitate the scalable interrogation of causal molecular mechanisms in brain cell types, we developed a 3D co-culture system of induced pluripotent stem cell (iPSC)-derived neurons and glia, termed iAssembloids. Using iAssembloids, we ask how glial and neuronal cells interact to control neuronal death and survival. Our CRISPRi-based screens identified that GSK3β inhibits the protective NRF2-mediated oxidative stress response elicited by high neuronal activity. We then investigate the role of APOE-ε4, a risk variant for Alzheimer's disease, on neuronal survival. We find that APOE-ε4-expressing astrocytes may promote neuronal hyperactivity as compared with APOE-ε3-expressing astrocytes. This platform allows for the unbiased identification of mechanisms of neuron-glia cell interactions.

在iAssembloids中基于crispr的筛选来阐明神经元-胶质细胞相互作用。
人类大脑的复杂性使得理解大脑功能背后的分子机制具有挑战性。全基因组关联研究已经发现了与神经表型相关的变异。单细胞转录组学已经提供了疾病期间脑细胞所经历的变化的描述。然而,这些方法并没有建立分子机制。为了便于对脑细胞类型的因果分子机制进行可扩展的研究,我们开发了一种诱导多能干细胞(iPSC)衍生的神经元和胶质细胞的3D共培养系统,称为iAssembloids。使用iAssembloids,我们询问神经胶质细胞和神经元细胞如何相互作用来控制神经元的死亡和存活。我们基于crispr的筛选发现,GSK3β抑制高神经元活性引发的nrf2介导的保护性氧化应激反应。然后,我们研究了APOE-ε4(阿尔茨海默病的一种风险变异)在神经元存活中的作用。我们发现,与表达APOE-ε3的星形胶质细胞相比,表达APOE-ε4的星形胶质细胞可能促进神经元的过度活跃。该平台允许对神经元-胶质细胞相互作用的机制进行公正的鉴定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信