{"title":"Pharmacodynamics of interspecies interactions in polymicrobial infections.","authors":"C Herzberg, J G C van Hasselt","doi":"10.1038/s41522-024-00621-6","DOIUrl":null,"url":null,"abstract":"<p><p>The pharmacodynamic response of bacterial pathogens to antibiotics can be influenced by interactions with other bacterial species in polymicrobial infections (PMIs). Understanding the complex eco-evolutionary dynamics of PMIs and their impact on antimicrobial treatment response represents a step towards developing improved treatment strategies for PMIs. Here, we investigated how interspecies interactions in a multi-species bacterial community affect the pharmacodynamic response to antimicrobial treatment. To this end, we developed an in silico model which combined agent-based modeling with ordinary differential equations. Our analyses suggest that both interspecies interactions, modifying either drug sensitivity or bacterial growth rate, and drug-specific pharmacological properties drive the bacterial pharmacodynamic response. Furthermore, lifestyle of the bacterial population and the range of interactions can influence the impact of species interactions. In conclusion, this study provides a foundation for the design of antimicrobial treatment strategies for PMIs which leverage the effects of interspecies interactions.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"20"},"PeriodicalIF":7.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751299/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-024-00621-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The pharmacodynamic response of bacterial pathogens to antibiotics can be influenced by interactions with other bacterial species in polymicrobial infections (PMIs). Understanding the complex eco-evolutionary dynamics of PMIs and their impact on antimicrobial treatment response represents a step towards developing improved treatment strategies for PMIs. Here, we investigated how interspecies interactions in a multi-species bacterial community affect the pharmacodynamic response to antimicrobial treatment. To this end, we developed an in silico model which combined agent-based modeling with ordinary differential equations. Our analyses suggest that both interspecies interactions, modifying either drug sensitivity or bacterial growth rate, and drug-specific pharmacological properties drive the bacterial pharmacodynamic response. Furthermore, lifestyle of the bacterial population and the range of interactions can influence the impact of species interactions. In conclusion, this study provides a foundation for the design of antimicrobial treatment strategies for PMIs which leverage the effects of interspecies interactions.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.