Label-free nanoscopy of cell metabolism by ultrasensitive reweighted visible stimulated Raman scattering.

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Haonan Lin, Scott Seitz, Yuying Tan, Jean-Baptiste Lugagne, Le Wang, Guangrui Ding, Hongjian He, Tyler J Rauwolf, Mary J Dunlop, John H Connor, John A Porco, Lei Tian, Ji-Xin Cheng
{"title":"Label-free nanoscopy of cell metabolism by ultrasensitive reweighted visible stimulated Raman scattering.","authors":"Haonan Lin, Scott Seitz, Yuying Tan, Jean-Baptiste Lugagne, Le Wang, Guangrui Ding, Hongjian He, Tyler J Rauwolf, Mary J Dunlop, John H Connor, John A Porco, Lei Tian, Ji-Xin Cheng","doi":"10.1038/s41592-024-02575-1","DOIUrl":null,"url":null,"abstract":"<p><p>Super-resolution imaging of cell metabolism is hindered by the incompatibility of small metabolites with fluorescent dyes and the limited resolution of imaging mass spectrometry. We present ultrasensitive reweighted visible stimulated Raman scattering (URV-SRS), a label-free vibrational imaging technique for multiplexed nanoscopy of intracellular metabolites. We developed a visible SRS microscope with extensive pulse chirping to improve the detection limit to ~4,000 molecules and introduced a self-supervised multi-agent denoiser to suppress non-independent noise in SRS by over 7.2 dB, resulting in a 50-fold sensitivity enhancement over near-infrared SRS. Leveraging the enhanced sensitivity, we employed Fourier reweighting to amplify sub-100-nm spatial frequencies that were previously overwhelmed by noise. Validated by Fourier ring correlation, we achieved a lateral resolution of 86 nm in cell imaging. We visualized the reprogramming of metabolic nanostructures associated with virus replication in host cells and subcellular fatty acid synthesis in engineered bacteria, demonstrating its capability towards nanoscopic spatial metabolomics.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-024-02575-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Super-resolution imaging of cell metabolism is hindered by the incompatibility of small metabolites with fluorescent dyes and the limited resolution of imaging mass spectrometry. We present ultrasensitive reweighted visible stimulated Raman scattering (URV-SRS), a label-free vibrational imaging technique for multiplexed nanoscopy of intracellular metabolites. We developed a visible SRS microscope with extensive pulse chirping to improve the detection limit to ~4,000 molecules and introduced a self-supervised multi-agent denoiser to suppress non-independent noise in SRS by over 7.2 dB, resulting in a 50-fold sensitivity enhancement over near-infrared SRS. Leveraging the enhanced sensitivity, we employed Fourier reweighting to amplify sub-100-nm spatial frequencies that were previously overwhelmed by noise. Validated by Fourier ring correlation, we achieved a lateral resolution of 86 nm in cell imaging. We visualized the reprogramming of metabolic nanostructures associated with virus replication in host cells and subcellular fatty acid synthesis in engineered bacteria, demonstrating its capability towards nanoscopic spatial metabolomics.

利用超灵敏重加权可见受激拉曼散射技术进行细胞代谢的无标记纳米观察。
小代谢产物与荧光染料的不相容性和成像质谱的有限分辨率阻碍了细胞代谢的超分辨率成像。我们提出了超灵敏的重加权可见受激拉曼散射(uv - srs),这是一种无标记的振动成像技术,用于细胞内代谢物的多路纳米观察。我们开发了一种具有广泛脉冲啁啾的可见SRS显微镜,将检测限提高到~4,000个分子,并引入了自监督多智能体去噪器,将SRS中的非独立噪声抑制了7.2 dB以上,从而使灵敏度比近红外SRS提高了50倍。利用增强的灵敏度,我们采用傅立叶重加权来放大以前被噪声淹没的100纳米以下的空间频率。通过傅里叶环相关验证,我们在细胞成像中实现了86 nm的横向分辨率。我们可视化了与宿主细胞中病毒复制和工程细菌中亚细胞脂肪酸合成相关的代谢纳米结构的重编程,证明了其在纳米尺度空间代谢组学方面的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信