Shenyao Zhang, Min Lu, Gaoyan Kuang, Xiaotong Xu, Jun Fu, Churan Zeng
{"title":"HDAC1 overexpression inhibits steroid-induced apoptosis of mouse osteocyte-like MLO-Y4 cells by inducing SP1 deacetylation.","authors":"Shenyao Zhang, Min Lu, Gaoyan Kuang, Xiaotong Xu, Jun Fu, Churan Zeng","doi":"10.12122/j.issn.1673-4254.2025.01.02","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To explore the mechanism by which histone deacetylase 1 (HDAC1) regulates steroid-induced apoptosis of mouse osteocyte-like MLO-Y4 cells.</p><p><strong>Methods: </strong>MLY-O4 cells were treated with 400 nmol/L trichostatin A (TSA) or 1 mmol/L dexamethasone for 24 h or transfected with a HDAC1-overexpressing vector prior to TSA or dexamethasone treatment. The changes in the expressions of HDAC1, SP1, cleaved caspase-3 and Bax, SP1 acetylation level, cell proliferation, and cell apoptosis were examined. The interaction between HDAC1 and SP1 was determined with immunoprecipitation assay and Western blotting.</p><p><strong>Results: </strong>Treatment with dexamethasone significantly increased cell apoptosis, enhanced the expressions of cleaved caspase-3 and Bax, reduced HDAC1 expression, and suppressed proliferation of MLO-Y4 cells. Both TSA and dexamethasone obviously increased SP1 acetylation level and the expression of SP1 in MLO-Y4 cells. HDAC1 overexpression in the cells significantly attenuated the effect of TSA and dexamethasone, promoted cell proliferation, lowered the expressions of SP1, cleaved caspase-3 and Bax, and inhibited dexamethasone-induced cell apoptosis. Immunoprecipitation assay and Western blotting demonstrated the interaction between HDAC1 and SP1 in the cells.</p><p><strong>Conclusions: </strong>HDAC1 inhibits dexamethasone-induced apoptosis and promotes proliferation of cultured mouse osteocytes by suppressing SP1 expression via promoting its deacetylation.</p>","PeriodicalId":18962,"journal":{"name":"南方医科大学学报杂志","volume":"45 1","pages":"10-17"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744275/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"南方医科大学学报杂志","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12122/j.issn.1673-4254.2025.01.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To explore the mechanism by which histone deacetylase 1 (HDAC1) regulates steroid-induced apoptosis of mouse osteocyte-like MLO-Y4 cells.
Methods: MLY-O4 cells were treated with 400 nmol/L trichostatin A (TSA) or 1 mmol/L dexamethasone for 24 h or transfected with a HDAC1-overexpressing vector prior to TSA or dexamethasone treatment. The changes in the expressions of HDAC1, SP1, cleaved caspase-3 and Bax, SP1 acetylation level, cell proliferation, and cell apoptosis were examined. The interaction between HDAC1 and SP1 was determined with immunoprecipitation assay and Western blotting.
Results: Treatment with dexamethasone significantly increased cell apoptosis, enhanced the expressions of cleaved caspase-3 and Bax, reduced HDAC1 expression, and suppressed proliferation of MLO-Y4 cells. Both TSA and dexamethasone obviously increased SP1 acetylation level and the expression of SP1 in MLO-Y4 cells. HDAC1 overexpression in the cells significantly attenuated the effect of TSA and dexamethasone, promoted cell proliferation, lowered the expressions of SP1, cleaved caspase-3 and Bax, and inhibited dexamethasone-induced cell apoptosis. Immunoprecipitation assay and Western blotting demonstrated the interaction between HDAC1 and SP1 in the cells.
Conclusions: HDAC1 inhibits dexamethasone-induced apoptosis and promotes proliferation of cultured mouse osteocytes by suppressing SP1 expression via promoting its deacetylation.