{"title":"A low-dose CT reconstruction method using sub-pixel anisotropic diffusion.","authors":"Shizhou Tang, Ruolan Su, Shuting Li, Zhenzhen Lai, Jinhong Huang, Shanzhou Niu","doi":"10.12122/j.issn.1673-4254.2025.01.19","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>We present a new low-dose CT reconstruction method using sub-pixel and anisotropic diffusion.</p><p><strong>Methods: </strong>The sub-pixel intensity values and their second-order differences were obtained using linear interpolation techniques, and the new gradient information was then embedded into an anisotropic diffusion process, which was introduced into a penalty-weighted least squares model to reduce the noise in low-dose CT projection data. The high-quality CT image was finally reconstructed using the classical filtered back-projection (FBP) algorithm from the estimated data.</p><p><strong>Results: </strong>In the Shepp-Logan phantom experiments, the structural similarity (SSIM) index of the CT image reconstructed by the proposed algorithm, as compared with FBP, PWLS-Gibbs and PWLS-TV algorithms, was increased by 28.13%, 5.49%, and 0.91%, the feature similarity (FSIM) index was increased by 21.08%, 1.78%, and 1.36%, and the root mean square error (RMSE) was reduced by 69.59%, 18.96%, and 3.90%, respectively. In the digital XCAT phantom experiments, the SSIM index of the CT image reconstructed by the proposed algorithm, as compared with FBP, PWLS-Gibbs and PWLS-TV algorithms, was increased by 14.24%, 1.43% and 7.89%, the FSIM index was increased by 9.61%, 1.78% and 5.66%, and the RMSE was reduced by 26.88%, 9.41% and 18.39%, respectively. In clinical experiments, the SSIM index of the image reconstructed using the proposed algorithm was increased by 19.24%, 15.63% and 3.68%, the FSIM index was increased by 4.30%, 2.92% and 0.43%, and the RMSE was reduced by 44.60%, 36.84% and 15.22% in comparison with FBP, PWLS-Gibbs and PWLS-TV algorithms, respectively.</p><p><strong>Conclusions: </strong>The proposed method can effectively reduce the noises and artifacts while maintaining the structural details in low-dose CT images.</p>","PeriodicalId":18962,"journal":{"name":"南方医科大学学报杂志","volume":"45 1","pages":"162-169"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744285/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"南方医科大学学报杂志","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12122/j.issn.1673-4254.2025.01.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: We present a new low-dose CT reconstruction method using sub-pixel and anisotropic diffusion.
Methods: The sub-pixel intensity values and their second-order differences were obtained using linear interpolation techniques, and the new gradient information was then embedded into an anisotropic diffusion process, which was introduced into a penalty-weighted least squares model to reduce the noise in low-dose CT projection data. The high-quality CT image was finally reconstructed using the classical filtered back-projection (FBP) algorithm from the estimated data.
Results: In the Shepp-Logan phantom experiments, the structural similarity (SSIM) index of the CT image reconstructed by the proposed algorithm, as compared with FBP, PWLS-Gibbs and PWLS-TV algorithms, was increased by 28.13%, 5.49%, and 0.91%, the feature similarity (FSIM) index was increased by 21.08%, 1.78%, and 1.36%, and the root mean square error (RMSE) was reduced by 69.59%, 18.96%, and 3.90%, respectively. In the digital XCAT phantom experiments, the SSIM index of the CT image reconstructed by the proposed algorithm, as compared with FBP, PWLS-Gibbs and PWLS-TV algorithms, was increased by 14.24%, 1.43% and 7.89%, the FSIM index was increased by 9.61%, 1.78% and 5.66%, and the RMSE was reduced by 26.88%, 9.41% and 18.39%, respectively. In clinical experiments, the SSIM index of the image reconstructed using the proposed algorithm was increased by 19.24%, 15.63% and 3.68%, the FSIM index was increased by 4.30%, 2.92% and 0.43%, and the RMSE was reduced by 44.60%, 36.84% and 15.22% in comparison with FBP, PWLS-Gibbs and PWLS-TV algorithms, respectively.
Conclusions: The proposed method can effectively reduce the noises and artifacts while maintaining the structural details in low-dose CT images.