[Dealing with deep uncertainty during a pandemic; make policies adaptive].

Q4 Medicine
Marcel G M Olde Rikkert, Etiënne Rouwette, Hubert Korzilius, Tom Oreel, Rick Quax, Vincent Marchau, Heiman Wertheim
{"title":"[Dealing with deep uncertainty during a pandemic; make policies adaptive].","authors":"Marcel G M Olde Rikkert, Etiënne Rouwette, Hubert Korzilius, Tom Oreel, Rick Quax, Vincent Marchau, Heiman Wertheim","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This article is a reflection on the covid-19 pandemic and the policy on medical and non-medical e.g. (lock down) measures, and on how we can anticipate earlier on for example effects on education and wellbeing of young people. We show that insights from complexity science are relevant for pandemic policy making and advocate use of resilience indicators, alternative computational models and deep uncertainty modeling. Time series of sick leave can act as resilience indicator in health care and showed large difference between acute care, long term care and mental health care in Dutch covid-19 pandemic. Instead of epidemiology based predict and act models, which mostly turn out to be incorrect, we developed alternative multiscale modelsto simulate interdomain effects. In sum, future pandemics policymaking can profit from adaptive decision making under deep uncertainty.</p>","PeriodicalId":18903,"journal":{"name":"Nederlands tijdschrift voor geneeskunde","volume":"169 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nederlands tijdschrift voor geneeskunde","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

This article is a reflection on the covid-19 pandemic and the policy on medical and non-medical e.g. (lock down) measures, and on how we can anticipate earlier on for example effects on education and wellbeing of young people. We show that insights from complexity science are relevant for pandemic policy making and advocate use of resilience indicators, alternative computational models and deep uncertainty modeling. Time series of sick leave can act as resilience indicator in health care and showed large difference between acute care, long term care and mental health care in Dutch covid-19 pandemic. Instead of epidemiology based predict and act models, which mostly turn out to be incorrect, we developed alternative multiscale modelsto simulate interdomain effects. In sum, future pandemics policymaking can profit from adaptive decision making under deep uncertainty.

[应对大流行期间的高度不确定性;使政策具有适应性]。
本文旨在反思2019冠状病毒病大流行以及医疗和非医疗(例如封锁)措施的政策,以及我们如何能够更早地预测对年轻人的教育和福祉的影响。我们表明,复杂性科学的见解与流行病政策制定相关,并倡导使用弹性指标、替代计算模型和深度不确定性建模。病假时间序列可以作为医疗保健的弹性指标,在荷兰covid-19大流行中,急性护理、长期护理和精神卫生保健之间存在较大差异。代替基于流行病学的预测和行动模型,我们开发了替代的多尺度模型来模拟域间效应,这些模型大多是不正确的。总之,未来的流行病政策制定可以从深度不确定性下的适应性决策中获益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nederlands tijdschrift voor geneeskunde
Nederlands tijdschrift voor geneeskunde Medicine-Medicine (all)
CiteScore
0.30
自引率
0.00%
发文量
302
期刊介绍: Het NTVG staat bekend als hét wetenschappelijke algemene medische tijdschrift. De lange historie en de degelijkheid maken het tijdschrift tot een bolwerk van medische wetenschap in druk. Ook door de goede leesbaarheid draagt het tijdschrift bij aan de voortdurende dialoog over de geneeskunde.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信