Huihui Zhu, Youjin Reo, Geonwoong Park, Wonryeol Yang, Ao Liu, Yong-Young Noh
{"title":"Fabrication of high-performance tin halide perovskite thin-film transistors via chemical solution-based composition engineering.","authors":"Huihui Zhu, Youjin Reo, Geonwoong Park, Wonryeol Yang, Ao Liu, Yong-Young Noh","doi":"10.1038/s41596-024-01101-z","DOIUrl":null,"url":null,"abstract":"<p><p>Metal halide perovskite semiconductors have attracted considerable attention because they enable the development of devices with exceptional optoelectronic and electronic properties via cost-effective and high-throughput chemical solution processes. However, challenges persist in the solution processing of perovskite films, including limited control over crystallization and the formation of defective deposits, leading to suboptimal device performance and reproducibility. Tin (Sn<sup>2+</sup>) halide perovskite holds promise for achieving high-performance thin-film transistors (TFTs) due to its intrinsic high hole mobility. Nevertheless, reliable production of high-quality Sn<sup>2+</sup> perovskite films remains challenging due to the rapid crystallization compared with more extensively studied lead (Pb)-based materials. Recently, composition engineering has emerged as a mature and effective strategy for realizing the high-yield fabrication of Sn<sup>2+</sup> halide perovskite thin films. This approach cannot only achieve improved TFT performance with high hole mobilities and current ratios<sup>1-6</sup>, but also enable reliable device operation with hysteresis-free character and long-term stability<sup>7-12</sup>. Here we provide the experimental procedure for precursor preparation, film and device fabrication and characterization. The entire process typically takes 20-24 h. This protocol requires a basic understanding of metal halide perovskites, perovskite film coating process, standard TFT fabrication and measurement techniques.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01101-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Metal halide perovskite semiconductors have attracted considerable attention because they enable the development of devices with exceptional optoelectronic and electronic properties via cost-effective and high-throughput chemical solution processes. However, challenges persist in the solution processing of perovskite films, including limited control over crystallization and the formation of defective deposits, leading to suboptimal device performance and reproducibility. Tin (Sn2+) halide perovskite holds promise for achieving high-performance thin-film transistors (TFTs) due to its intrinsic high hole mobility. Nevertheless, reliable production of high-quality Sn2+ perovskite films remains challenging due to the rapid crystallization compared with more extensively studied lead (Pb)-based materials. Recently, composition engineering has emerged as a mature and effective strategy for realizing the high-yield fabrication of Sn2+ halide perovskite thin films. This approach cannot only achieve improved TFT performance with high hole mobilities and current ratios1-6, but also enable reliable device operation with hysteresis-free character and long-term stability7-12. Here we provide the experimental procedure for precursor preparation, film and device fabrication and characterization. The entire process typically takes 20-24 h. This protocol requires a basic understanding of metal halide perovskites, perovskite film coating process, standard TFT fabrication and measurement techniques.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.