Liu Xin, Ning Kanghao, Li Jiacheng, Yan Xiaodong, Yan Juhan, Zhao Xinyang, Li Xiangdong
{"title":"Panax Notoginseng Saponins Inhibit Apoptosis and Alleviate Renal Ischemia-Reperfusion Injury Through the ROCK2/NF-κB Pathway.","authors":"Liu Xin, Ning Kanghao, Li Jiacheng, Yan Xiaodong, Yan Juhan, Zhao Xinyang, Li Xiangdong","doi":"10.1007/s12033-025-01366-z","DOIUrl":null,"url":null,"abstract":"<p><p>Renal ischemia-reperfusion injury (RIRI) is a primary cause of acute kidney injury (AKI), frequently resulting in high mortality rates and progression to chronic kidney disease (CKD). This study aimed to investigate the therapeutic potential of total saponins from Panax notoginseng (PNS) in the context of RIRI. Utilizing a murine RIRI model, the efficacy of PNS was evaluated, demonstrating a significant reduction in renal inflammation and cellular pyroptosis. Furthermore, PNS was found to modulate the ROCK2/NF-κB signaling pathway, thereby attenuating the inflammatory response. Importantly, in vitro experiments with hypoxia/reoxygenation cell models corroborated these findings, showing that PNS inhibited pyroptosis and regulated the ROCK2/NF-κB pathway. This research underscores the therapeutic potential of PNS in the treatment of RIRI, providing a robust scientific basis for its consideration as a prospective clinical therapy.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-025-01366-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Renal ischemia-reperfusion injury (RIRI) is a primary cause of acute kidney injury (AKI), frequently resulting in high mortality rates and progression to chronic kidney disease (CKD). This study aimed to investigate the therapeutic potential of total saponins from Panax notoginseng (PNS) in the context of RIRI. Utilizing a murine RIRI model, the efficacy of PNS was evaluated, demonstrating a significant reduction in renal inflammation and cellular pyroptosis. Furthermore, PNS was found to modulate the ROCK2/NF-κB signaling pathway, thereby attenuating the inflammatory response. Importantly, in vitro experiments with hypoxia/reoxygenation cell models corroborated these findings, showing that PNS inhibited pyroptosis and regulated the ROCK2/NF-κB pathway. This research underscores the therapeutic potential of PNS in the treatment of RIRI, providing a robust scientific basis for its consideration as a prospective clinical therapy.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.