Calycosin‑7‑O‑β‑D‑glucoside downregulates mitophagy by mitigating mitochondrial fission to protect HT22 cells from oxygen‑glucose deprivation/reperfusion‑induced injury.

IF 3.4 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular medicine reports Pub Date : 2025-03-01 Epub Date: 2025-01-17 DOI:10.3892/mmr.2025.13436
Xiangli Yan, Siqi Quan, Roujia Guo, Zibo Li, Ming Bai, Baoying Wang, Pan Su, Erping Xu, Yucheng Li
{"title":"Calycosin‑7‑O‑β‑D‑glucoside downregulates mitophagy by mitigating mitochondrial fission to protect HT22 cells from oxygen‑glucose deprivation/reperfusion‑induced injury.","authors":"Xiangli Yan, Siqi Quan, Roujia Guo, Zibo Li, Ming Bai, Baoying Wang, Pan Su, Erping Xu, Yucheng Li","doi":"10.3892/mmr.2025.13436","DOIUrl":null,"url":null,"abstract":"<p><p>Calycosin‑7‑O‑β‑D‑glucoside (CG), a major active ingredient of Astragali Radix, exerts neuroprotective effects against cerebral ischemia; however, whether the effects of CG are associated with mitochondrial protection remains unclear. The present study explored the role of CG in improving mitochondrial function in a HT22 cell model of oxygen‑glucose deprivation/reperfusion (OGD/R). The Cell Counting Kit‑8 assay, flow cytometry, immunofluorescence and western blotting were performed to investigate the effects of CG on mitochondrial function. The results demonstrated that mitochondrial function was restored after treatment with CG, as indicated by reduced mitochondrial reactive oxygen species levels, increased mitochondrial membrane potential and improved mitochondrial morphology. Overactivated mitophagy was revealed to be inhibited by the regulation of proteins involved in fission [phosphorylated‑dynamin‑related protein 1 (Drp1) and Drp1] and mitophagy (LC3, p62 and translocase of outer mitochondrial membrane 20), and mitochondrial biogenesis was demonstrated to be enhanced by increased levels of sirtuin 1 (SIRT1) and peroxisome proliferator‑activated receptor γ coactivator‑1α (PGC‑1α). In addition, neuronal apoptosis was ameliorated by CG, as determined by a decreased rate of apoptosis, and levels of caspase‑3 and Bcl‑2/Bax. In conclusion, the present study demonstrated that CG may alleviate OGD/R‑induced injury by upregulating SIRT1 and PGC‑1α protein expression, and reducing excessive mitochondrial fission and overactivation of mitophagy.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"31 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751592/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2025.13436","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Calycosin‑7‑O‑β‑D‑glucoside (CG), a major active ingredient of Astragali Radix, exerts neuroprotective effects against cerebral ischemia; however, whether the effects of CG are associated with mitochondrial protection remains unclear. The present study explored the role of CG in improving mitochondrial function in a HT22 cell model of oxygen‑glucose deprivation/reperfusion (OGD/R). The Cell Counting Kit‑8 assay, flow cytometry, immunofluorescence and western blotting were performed to investigate the effects of CG on mitochondrial function. The results demonstrated that mitochondrial function was restored after treatment with CG, as indicated by reduced mitochondrial reactive oxygen species levels, increased mitochondrial membrane potential and improved mitochondrial morphology. Overactivated mitophagy was revealed to be inhibited by the regulation of proteins involved in fission [phosphorylated‑dynamin‑related protein 1 (Drp1) and Drp1] and mitophagy (LC3, p62 and translocase of outer mitochondrial membrane 20), and mitochondrial biogenesis was demonstrated to be enhanced by increased levels of sirtuin 1 (SIRT1) and peroxisome proliferator‑activated receptor γ coactivator‑1α (PGC‑1α). In addition, neuronal apoptosis was ameliorated by CG, as determined by a decreased rate of apoptosis, and levels of caspase‑3 and Bcl‑2/Bax. In conclusion, the present study demonstrated that CG may alleviate OGD/R‑induced injury by upregulating SIRT1 and PGC‑1α protein expression, and reducing excessive mitochondrial fission and overactivation of mitophagy.

毛蕊异黄酮- 7 - O - β - D -葡萄糖苷通过减轻线粒体裂变来下调线粒体自噬,以保护HT22细胞免受氧-葡萄糖剥夺/再灌注诱导的损伤。
黄芪的主要活性成分Calycosin - 7 - O - β - D - glucoside (CG)对脑缺血具有神经保护作用;然而,CG的作用是否与线粒体保护有关仍不清楚。本研究探讨了CG在改善氧糖剥夺/再灌注(OGD/R) HT22细胞模型中线粒体功能中的作用。采用细胞计数试剂盒- 8、流式细胞术、免疫荧光和western blotting检测CG对线粒体功能的影响。结果表明,CG治疗后线粒体功能恢复,线粒体活性氧水平降低,线粒体膜电位升高,线粒体形态改善。过度激活的线粒体自噬被发现通过参与裂变的蛋白[磷酸化动力蛋白相关蛋白1 (Drp1)和Drp1]和线粒体自噬(LC3, p62和线粒体外膜转座酶20)的调节而被抑制,线粒体生物发生被证明通过增加sirtuin 1 (SIRT1)和过氧化物酶体增殖体激活受体γ共激活因子1α (PGC - 1α)的水平而增强。此外,通过降低细胞凋亡率、caspase - 3和Bcl - 2/Bax水平来确定,CG可改善神经元凋亡。综上所述,本研究表明,CG可能通过上调SIRT1和PGC - 1α蛋白表达,减少线粒体过度分裂和线粒体自噬过度激活来减轻OGD/R诱导的损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular medicine reports
Molecular medicine reports 医学-病理学
CiteScore
7.60
自引率
0.00%
发文量
321
审稿时长
1.5 months
期刊介绍: Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信