Mengyang Chen, Ruijiang Fu, Yiqian Chen, Li Li, Shou-Wen Wang
{"title":"High-resolution, noninvasive single-cell lineage tracing in mice and humans based on DNA methylation epimutations.","authors":"Mengyang Chen, Ruijiang Fu, Yiqian Chen, Li Li, Shou-Wen Wang","doi":"10.1038/s41592-024-02567-1","DOIUrl":null,"url":null,"abstract":"<p><p>In vivo lineage tracing holds great potential to reveal fundamental principles of tissue development and homeostasis. However, current lineage tracing in humans relies on extremely rare somatic mutations, which has limited temporal resolution and lineage accuracy. Here, we developed a generic lineage-tracing tool based on frequent epimutations on DNA methylation, enabled by our computational method MethylTree. Using single-cell genome-wide DNA methylation datasets with known lineage and phenotypic labels, MethylTree reconstructed lineage histories at nearly 100% accuracy across different cell types, developmental stages, and species. We demonstrated the epimutation-based single-cell multi-omic lineage tracing in mouse and human blood, where MethylTree recapitulated the differentiation hierarchy in hematopoiesis. Applying MethylTree to human embryos, we revealed early fate commitment at the four-cell stage. In native mouse blood, we identified ~250 clones of hematopoietic stem cells. MethylTree opens the door for high-resolution, noninvasive and multi-omic lineage tracing in humans and beyond.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-024-02567-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In vivo lineage tracing holds great potential to reveal fundamental principles of tissue development and homeostasis. However, current lineage tracing in humans relies on extremely rare somatic mutations, which has limited temporal resolution and lineage accuracy. Here, we developed a generic lineage-tracing tool based on frequent epimutations on DNA methylation, enabled by our computational method MethylTree. Using single-cell genome-wide DNA methylation datasets with known lineage and phenotypic labels, MethylTree reconstructed lineage histories at nearly 100% accuracy across different cell types, developmental stages, and species. We demonstrated the epimutation-based single-cell multi-omic lineage tracing in mouse and human blood, where MethylTree recapitulated the differentiation hierarchy in hematopoiesis. Applying MethylTree to human embryos, we revealed early fate commitment at the four-cell stage. In native mouse blood, we identified ~250 clones of hematopoietic stem cells. MethylTree opens the door for high-resolution, noninvasive and multi-omic lineage tracing in humans and beyond.
期刊介绍:
Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.