Ya-Ping Chen, Purayidathkandy Sunojkumar, Robert A Spicer, Richard G J Hodel, Douglas E Soltis, Pamela S Soltis, Alan J Paton, Miao Sun, Bryan T Drew, Chun-Lei Xiang
{"title":"Rapid radiation of a plant lineage sheds light on the assembly of dry valley biomes.","authors":"Ya-Ping Chen, Purayidathkandy Sunojkumar, Robert A Spicer, Richard G J Hodel, Douglas E Soltis, Pamela S Soltis, Alan J Paton, Miao Sun, Bryan T Drew, Chun-Lei Xiang","doi":"10.1093/molbev/msaf011","DOIUrl":null,"url":null,"abstract":"<p><p>Southwest China is characterized by high plateaus, large mountain systems, and deeply incised dry valleys formed by major rivers and their tributaries. Despite the considerable attention given to alpine plant radiations in this region, the timing and mode of diversification of the numerous dry valley plant lineages remain unknown. To address this knowledge gap, we investigated the macroevolution of Isodon (Lamiaceae), a lineage commonly distributed in the dry valleys in southwest China and wetter areas of Asia and Africa. We reconstructed a robust phylogeny encompassing nearly 90% of the approximately 140 extant Isodon species using transcriptome and genome-resequencing data. Our results suggest a rapid radiation of Isodon during the Pliocene that coincided with a habit shift from herbs to shrubs and a habitat shift from humid areas to dry valleys. The shrubby growth form likely acted as a preadaptation allowing for the movement of Isodon species into these dry valleys. Ecological analyses highlight drought-related factors as key drivers influencing the niche preferences of different growth forms and species richness of Isodon. The interplay between topography and the development of the East Asian monsoon since the middle Miocene likely contributed to the formation of the dry valley biome in southwest China. This study enhances our understanding of evolutionary dynamics and ecological drivers shaping the distinctive flora of southwest China and reveals the strategies employed by montane plants in response to climate change and dryland expansion, thus facilitating conservation efforts globally.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msaf011","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Southwest China is characterized by high plateaus, large mountain systems, and deeply incised dry valleys formed by major rivers and their tributaries. Despite the considerable attention given to alpine plant radiations in this region, the timing and mode of diversification of the numerous dry valley plant lineages remain unknown. To address this knowledge gap, we investigated the macroevolution of Isodon (Lamiaceae), a lineage commonly distributed in the dry valleys in southwest China and wetter areas of Asia and Africa. We reconstructed a robust phylogeny encompassing nearly 90% of the approximately 140 extant Isodon species using transcriptome and genome-resequencing data. Our results suggest a rapid radiation of Isodon during the Pliocene that coincided with a habit shift from herbs to shrubs and a habitat shift from humid areas to dry valleys. The shrubby growth form likely acted as a preadaptation allowing for the movement of Isodon species into these dry valleys. Ecological analyses highlight drought-related factors as key drivers influencing the niche preferences of different growth forms and species richness of Isodon. The interplay between topography and the development of the East Asian monsoon since the middle Miocene likely contributed to the formation of the dry valley biome in southwest China. This study enhances our understanding of evolutionary dynamics and ecological drivers shaping the distinctive flora of southwest China and reveals the strategies employed by montane plants in response to climate change and dryland expansion, thus facilitating conservation efforts globally.
期刊介绍:
Molecular Biology and Evolution
Journal Overview:
Publishes research at the interface of molecular (including genomics) and evolutionary biology
Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic
Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research
Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.