Development of a Komagataella phaffii cell factory for sustainable production of ( +)-valencene.

IF 4.3 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jintao Cheng, Jiali Chen, Dingfeng Chen, Baoxian Li, Chaozhi Wei, Tao Liu, Xiao Wang, Zhengshun Wen, Yuanxiang Jin, Chenfan Sun, Guiling Yang
{"title":"Development of a Komagataella phaffii cell factory for sustainable production of ( +)-valencene.","authors":"Jintao Cheng, Jiali Chen, Dingfeng Chen, Baoxian Li, Chaozhi Wei, Tao Liu, Xiao Wang, Zhengshun Wen, Yuanxiang Jin, Chenfan Sun, Guiling Yang","doi":"10.1186/s12934-025-02649-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sesquiterpene ( +)-valencene is a characteristic aroma component from sweet orange fruit, which has a variety of biological activities and is widely used in industrial manufacturing of food, beverage and cosmetics industries. However, at present, the content in plant sources is low, and its yield and quality would be influenced by weather and land, which limit the supply of ( +)-valencene. The rapid development of synthetic biology has accelerated the construction of microbial cell factories and provided an effective alternative method for the production of natural products.</p><p><strong>Results: </strong>In this study, we first introduced the ( +)-valencene synthase into Komagataella phaffii by CRISPR/Cas9 system, and successfully constructed a ( +)-valencene producer with the initial yield of 2.1 mg/L. Subsequently, the ( +)-valencene yield was increased to 8.2 mg/L by fusing farnesyl pyrophosphate synthase with ( +)-valencene synthase using the selected ligation linker. High expression of key genes IDI1, tHMG1, ERG12 and ERG19 enhanced metabolic flux of MVA pathway, and the yield of ( +)-valencene was further increased by 27%. Besides, in-situ deletion of the promoter of ERG9 increased the yield of ( +)-valencene to 48.1 mg/L. Finally, we optimized the copy number of farnesyl pyrophosphate synthase and ( +)-valencene synthase fusion protein, and when the copy number reached three, the yield of ( +)-valencene achieved 173.6 mg/L in shake flask level, which was 82-fold higher than that of the starting strain CaVAL1.</p><p><strong>Conclusions: </strong>The results obtained here suggest that K. phaffii has the potential to efficiently synthesize other terpenoids.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"29"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752624/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-025-02649-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Sesquiterpene ( +)-valencene is a characteristic aroma component from sweet orange fruit, which has a variety of biological activities and is widely used in industrial manufacturing of food, beverage and cosmetics industries. However, at present, the content in plant sources is low, and its yield and quality would be influenced by weather and land, which limit the supply of ( +)-valencene. The rapid development of synthetic biology has accelerated the construction of microbial cell factories and provided an effective alternative method for the production of natural products.

Results: In this study, we first introduced the ( +)-valencene synthase into Komagataella phaffii by CRISPR/Cas9 system, and successfully constructed a ( +)-valencene producer with the initial yield of 2.1 mg/L. Subsequently, the ( +)-valencene yield was increased to 8.2 mg/L by fusing farnesyl pyrophosphate synthase with ( +)-valencene synthase using the selected ligation linker. High expression of key genes IDI1, tHMG1, ERG12 and ERG19 enhanced metabolic flux of MVA pathway, and the yield of ( +)-valencene was further increased by 27%. Besides, in-situ deletion of the promoter of ERG9 increased the yield of ( +)-valencene to 48.1 mg/L. Finally, we optimized the copy number of farnesyl pyrophosphate synthase and ( +)-valencene synthase fusion protein, and when the copy number reached three, the yield of ( +)-valencene achieved 173.6 mg/L in shake flask level, which was 82-fold higher than that of the starting strain CaVAL1.

Conclusions: The results obtained here suggest that K. phaffii has the potential to efficiently synthesize other terpenoids.

可持续生产(+)-价的Komagataella phaffii细胞工厂的开发。
背景:倍半萜烯(+)-价烯是甜橙果实中特有的香气成分,具有多种生物活性,广泛应用于食品、饮料、化妆品等工业制造中。但目前植物源中含量较低,且产量和品质受天气和土地的影响,限制了(+)价的供应。合成生物学的快速发展加速了微生物细胞工厂的建设,为天然产物的生产提供了有效的替代方法。结果:本研究首次通过CRISPR/Cas9系统将(+)-价烯合酶导入法菲Komagataella phaffii,成功构建了(+)-价烯产物,初始产率为2.1 mg/L。随后,利用所选择的连接连接体将法尼基焦磷酸合酶与(+)-价合酶融合,将(+)-价合酶的产率提高到8.2 mg/L。关键基因IDI1、tHMG1、ERG12和ERG19的高表达增强了MVA途径的代谢通量,(+)价烯的产量进一步提高了27%。此外,原位缺失ERG9启动子使(+)-价的产率提高到48.1 mg/L。最后,我们优化了法尼基焦磷酸合成酶和(+)-价合酶融合蛋白的拷贝数,当拷贝数达到3时,摇瓶水平下(+)-价合酶的产量达到173.6 mg/L,比起始菌株CaVAL1提高了82倍。结论:法非菲具有高效合成其他萜类化合物的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信