{"title":"Sustainable Synthesis of Medicinally Important Heterocycles.","authors":"Dripta De Joardar, Rajarshi Sarkar, Dilip K Maiti","doi":"10.2174/0113895575341409241201171848","DOIUrl":null,"url":null,"abstract":"<p><p>Sustainable chemistry and nature-friendly protocols are not only luxury but has become essential requirement for the modern society as it progresses towards a more responsible future. To match the current needs of the community, industries and in particular chemical industry is looking for novel and cheap strategies that have less adverse effects on the environment. Heterocyclic compounds are one particular motif, which is prevalent in nature. It is found in a wide range of synthetic and natural compounds, both established and in development as potent therapeutic candidates. According to the US retail market in 2014-2015, heterocyclic moieties constitute the basic skeletons for 80% of marketed pharmaceuticals. However, majority of the synthetic methodologies still uses classical approaches with toxic solvents, stoichiometric reagents, reactions with less atom economy etc. Thus, there is an urgent need for green, sustainable alternatives of the classical reactions. In recent years, an array of diverse approaches and technologies have been discovered by the scientific community to address the issue of eco-friendly manufacture of various pharmaceutically and medicinally important heterocyclic molecules. In this context, the current review will summarize various reported green pathways to the heterocyclic architecture, particularly O, N, and S-heterocyclic compounds. The methods highlighted in this article includes reaction in environment friendly nonconventional media, solvent-free approaches, heterogeneous catalysis, organocatalysis, electrochemical reactions, microwave-mediated reactions, ultrasound-based reactions, enzymatic reactions, biocatalysis, and others.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mini reviews in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113895575341409241201171848","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sustainable chemistry and nature-friendly protocols are not only luxury but has become essential requirement for the modern society as it progresses towards a more responsible future. To match the current needs of the community, industries and in particular chemical industry is looking for novel and cheap strategies that have less adverse effects on the environment. Heterocyclic compounds are one particular motif, which is prevalent in nature. It is found in a wide range of synthetic and natural compounds, both established and in development as potent therapeutic candidates. According to the US retail market in 2014-2015, heterocyclic moieties constitute the basic skeletons for 80% of marketed pharmaceuticals. However, majority of the synthetic methodologies still uses classical approaches with toxic solvents, stoichiometric reagents, reactions with less atom economy etc. Thus, there is an urgent need for green, sustainable alternatives of the classical reactions. In recent years, an array of diverse approaches and technologies have been discovered by the scientific community to address the issue of eco-friendly manufacture of various pharmaceutically and medicinally important heterocyclic molecules. In this context, the current review will summarize various reported green pathways to the heterocyclic architecture, particularly O, N, and S-heterocyclic compounds. The methods highlighted in this article includes reaction in environment friendly nonconventional media, solvent-free approaches, heterogeneous catalysis, organocatalysis, electrochemical reactions, microwave-mediated reactions, ultrasound-based reactions, enzymatic reactions, biocatalysis, and others.
期刊介绍:
The aim of Mini-Reviews in Medicinal Chemistry is to publish short reviews on the important recent developments in medicinal chemistry and allied disciplines.
Mini-Reviews in Medicinal Chemistry covers all areas of medicinal chemistry including developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, drug targets, and natural product research and structure-activity relationship studies.
Mini-Reviews in Medicinal Chemistry is an essential journal for every medicinal and pharmaceutical chemist who wishes to be kept informed and up-to-date with the latest and most important developments.