Tristan Aurégan, Mathilde Lemoine, Benjamin Thiria, Sylvain Courrech du Pont
{"title":"Improving propulsive efficiency using bio-inspired intermittent locomotion.","authors":"Tristan Aurégan, Mathilde Lemoine, Benjamin Thiria, Sylvain Courrech du Pont","doi":"10.1098/rsif.2024.0624","DOIUrl":null,"url":null,"abstract":"<p><p>Many swimmers, especially small- to medium-sized animals, use intermittent locomotion that differs from continuous swimming of large species. This type of locomotion, called burst and coast, is often associated with an energetic advantage. In this work, we investigate the intermittent locomotion inspired by fish locomotion but applied to a propeller. The energy consumption of burst-and-coast cycles is measured and compared to the continuous rotation regime. We show that a substantial drag ratio between the active and passive phases of the motion, as observed in fish, is critical for energy savings. Such a contrast can be obtained using a folding propeller that passively opens and closes as the propeller starts and stops rotating. For this reconfigurable propeller, intermittent propulsion is found to be energetically advantageous, saving up to 24% of the energy required to cruise at a given speed. Using an analytical model, we show that intermittent motion is more efficient than continuous motion when the drag reduction in the coast phase exceeds 65%. For fish-like locomotion, this threshold seems to be closer to 30%. A formal analogy allows us to explain the difference between propeller propulsion and fish locomotion.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 222","pages":"20240624"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750389/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0624","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Many swimmers, especially small- to medium-sized animals, use intermittent locomotion that differs from continuous swimming of large species. This type of locomotion, called burst and coast, is often associated with an energetic advantage. In this work, we investigate the intermittent locomotion inspired by fish locomotion but applied to a propeller. The energy consumption of burst-and-coast cycles is measured and compared to the continuous rotation regime. We show that a substantial drag ratio between the active and passive phases of the motion, as observed in fish, is critical for energy savings. Such a contrast can be obtained using a folding propeller that passively opens and closes as the propeller starts and stops rotating. For this reconfigurable propeller, intermittent propulsion is found to be energetically advantageous, saving up to 24% of the energy required to cruise at a given speed. Using an analytical model, we show that intermittent motion is more efficient than continuous motion when the drag reduction in the coast phase exceeds 65%. For fish-like locomotion, this threshold seems to be closer to 30%. A formal analogy allows us to explain the difference between propeller propulsion and fish locomotion.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.