Buzz pollination: investigations of pollen expulsion using the discrete element method.

IF 3.7 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2025-01-01 Epub Date: 2025-01-22 DOI:10.1098/rsif.2024.0526
Caelen Boucher-Bergstedt, Mark Jankauski, Erick Johnson
{"title":"Buzz pollination: investigations of pollen expulsion using the discrete element method.","authors":"Caelen Boucher-Bergstedt, Mark Jankauski, Erick Johnson","doi":"10.1098/rsif.2024.0526","DOIUrl":null,"url":null,"abstract":"<p><p>Buzz pollination involves the release of pollen from, primarily, poricidal anthers through vibrations generated by certain bee species. Despite previous experimental and numerical studies, the intricacies of pollen dynamics within vibrating anthers remain elusive due to the challenges in observing these small-scale, opaque systems. This research employs the discrete element method to simulate the pollen expulsion process in vibrating anthers. By exploring various frequencies and displacement amplitudes, a correlation between how aggressively the anther shakes and the initial rate of pollen expulsion is observed under translating oscillations. This study highlights that while increasing both the frequency and displacement of vibration enhances pollen release, the rate of release does not grow linearly with their increase. Our findings also reveal the significant role of pollen-pollen interactions, which account for upwards of one-third of the total collisions. Comparisons between two types of anther exits suggest that pore size and shape also influence expulsion rates. This research provides a foundation for more comprehensive models that can incorporate additional factors such as cohesion, adhesion and Coulomb forces, paving the way for deeper insights into the mechanics of buzz pollination and its variability across different anther types and vibration parameters.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 222","pages":"20240526"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750361/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0526","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Buzz pollination involves the release of pollen from, primarily, poricidal anthers through vibrations generated by certain bee species. Despite previous experimental and numerical studies, the intricacies of pollen dynamics within vibrating anthers remain elusive due to the challenges in observing these small-scale, opaque systems. This research employs the discrete element method to simulate the pollen expulsion process in vibrating anthers. By exploring various frequencies and displacement amplitudes, a correlation between how aggressively the anther shakes and the initial rate of pollen expulsion is observed under translating oscillations. This study highlights that while increasing both the frequency and displacement of vibration enhances pollen release, the rate of release does not grow linearly with their increase. Our findings also reveal the significant role of pollen-pollen interactions, which account for upwards of one-third of the total collisions. Comparisons between two types of anther exits suggest that pore size and shape also influence expulsion rates. This research provides a foundation for more comprehensive models that can incorporate additional factors such as cohesion, adhesion and Coulomb forces, paving the way for deeper insights into the mechanics of buzz pollination and its variability across different anther types and vibration parameters.

蜂传粉:用离散元法研究花粉排出。
嗡嗡传粉主要是通过某些蜜蜂种类产生的振动从花粉中释放花粉。尽管之前有实验和数值研究,但由于观察这些小尺度、不透明系统的挑战,花粉动态在振动花药中的复杂性仍然难以捉摸。本研究采用离散元法模拟花粉在振动花药中的排出过程。通过探索不同的频率和位移幅度,在平移振荡下观察到花药振动的剧烈程度与花粉排出的初始速率之间的相关性。本研究强调,虽然增加振动频率和位移都能促进花粉释放,但释放速度并不随它们的增加而线性增长。我们的发现还揭示了花粉-花粉相互作用的重要作用,它占总碰撞的三分之一以上。对两种类型花药出口的比较表明,孔的大小和形状也影响排出速率。该研究为建立更全面的模型提供了基础,这些模型可以纳入其他因素,如内聚力、附着力和库仑力,为深入了解蜂鸣授粉的机制及其在不同花药类型和振动参数中的变异性铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信