Nausicaa Poullet , Johanna Guichard , David Beramice , Laurent Dantec , Jean-Luc Gourdine , Mathieu Bonneau
{"title":"Combining automated behaviour recognition and physiological data to characterize heat tolerance and animal welfare in growing pigs","authors":"Nausicaa Poullet , Johanna Guichard , David Beramice , Laurent Dantec , Jean-Luc Gourdine , Mathieu Bonneau","doi":"10.1016/j.jtherbio.2025.104048","DOIUrl":null,"url":null,"abstract":"<div><div>Estimating animal behaviour during heat stress (HS) is particularly insightful to monitor animal welfare but also to better understand how animals thermoregulate. The present study is a proof of concept combining computer vision to monitor animal behaviour, continuous monitoring of subcutaneous temperature and recording of ambient temperature, with the aim to study the link between behaviour and animal body temperature during HS. A total of 22 pigs were video-monitored from 8:00 to 18.00 under two contrasted conditions: HS corresponding to the tropical climate (between 20.3 °C and 27.9 °C) and Thermoneutral (TN) consisting of an indoor temperature-controlled room at 22 °C. Animal temperature (<em>T</em><sub><em>muscle</em></sub><em>)</em> and ambient temperature were monitored continuously using temperature loggers. Pig postures estimated by a neural network show that animal in HS spend more time lying laterally and less time lying sternally than in TN. Moreover, in HS, the length of the lateral sequences increased with the outdoor ambient temperature. The ability of an animal to dissipate heat while lying laterally was quantified through a Heat Dissipation Coefficient (HDC), combining <em>T</em><sub><em>muscle</em></sub> and lateral lying sequence duration, and showed great individual variation. A Heat Discomfort Index (HDI) was also determined to quantify the difference in time spent lying laterally between HS and TN and could be useful as a proxy to quantify animal welfare reduction due to HS. This study demonstrates that combining image analysis to monitor animal behaviour and physiological data is an efficient tool to derive quantitative criterion to characterize animal welfare and traits related to heat tolerance.</div></div>","PeriodicalId":17428,"journal":{"name":"Journal of thermal biology","volume":"127 ","pages":"Article 104048"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thermal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306456525000051","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Estimating animal behaviour during heat stress (HS) is particularly insightful to monitor animal welfare but also to better understand how animals thermoregulate. The present study is a proof of concept combining computer vision to monitor animal behaviour, continuous monitoring of subcutaneous temperature and recording of ambient temperature, with the aim to study the link between behaviour and animal body temperature during HS. A total of 22 pigs were video-monitored from 8:00 to 18.00 under two contrasted conditions: HS corresponding to the tropical climate (between 20.3 °C and 27.9 °C) and Thermoneutral (TN) consisting of an indoor temperature-controlled room at 22 °C. Animal temperature (Tmuscle) and ambient temperature were monitored continuously using temperature loggers. Pig postures estimated by a neural network show that animal in HS spend more time lying laterally and less time lying sternally than in TN. Moreover, in HS, the length of the lateral sequences increased with the outdoor ambient temperature. The ability of an animal to dissipate heat while lying laterally was quantified through a Heat Dissipation Coefficient (HDC), combining Tmuscle and lateral lying sequence duration, and showed great individual variation. A Heat Discomfort Index (HDI) was also determined to quantify the difference in time spent lying laterally between HS and TN and could be useful as a proxy to quantify animal welfare reduction due to HS. This study demonstrates that combining image analysis to monitor animal behaviour and physiological data is an efficient tool to derive quantitative criterion to characterize animal welfare and traits related to heat tolerance.
期刊介绍:
The Journal of Thermal Biology publishes articles that advance our knowledge on the ways and mechanisms through which temperature affects man and animals. This includes studies of their responses to these effects and on the ecological consequences. Directly relevant to this theme are:
• The mechanisms of thermal limitation, heat and cold injury, and the resistance of organisms to extremes of temperature
• The mechanisms involved in acclimation, acclimatization and evolutionary adaptation to temperature
• Mechanisms underlying the patterns of hibernation, torpor, dormancy, aestivation and diapause
• Effects of temperature on reproduction and development, growth, ageing and life-span
• Studies on modelling heat transfer between organisms and their environment
• The contributions of temperature to effects of climate change on animal species and man
• Studies of conservation biology and physiology related to temperature
• Behavioural and physiological regulation of body temperature including its pathophysiology and fever
• Medical applications of hypo- and hyperthermia
Article types:
• Original articles
• Review articles