Exploring the correlation between chemical bonding and structural distortions in TbCu0.33Te2.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Leander Weinelt, Simon Steinberg
{"title":"Exploring the correlation between chemical bonding and structural distortions in TbCu<sub>0.33</sub>Te<sub>2</sub>.","authors":"Leander Weinelt, Simon Steinberg","doi":"10.1088/1361-648X/ada411","DOIUrl":null,"url":null,"abstract":"<p><p>The design of solid-state materials requests a thorough understanding of the structural preferences among plausible structure models. Since the bond energy contributes to the formation energy of a given structure model, it also is decisive to determine the nature of chemical bonding for a given material. In this context, we were motivated to explore the correlation between chemical bonding and structural distortions within the low-dimensional tellurium fragments in TbCu<sub>0.33</sub>Te<sub>2</sub>. The ternary telluride was obtained from high-temperature solid-state reactions, while structure determinations based on x-ray diffraction experiments did not point to the presence of any structural distortion above 100 K. However, the results of first-principles-based computations indicate that a potential structural distortion within the low-dimensional tellurium fragments also correlates to an optimization of overall bonding.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":"37 11","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ada411","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The design of solid-state materials requests a thorough understanding of the structural preferences among plausible structure models. Since the bond energy contributes to the formation energy of a given structure model, it also is decisive to determine the nature of chemical bonding for a given material. In this context, we were motivated to explore the correlation between chemical bonding and structural distortions within the low-dimensional tellurium fragments in TbCu0.33Te2. The ternary telluride was obtained from high-temperature solid-state reactions, while structure determinations based on x-ray diffraction experiments did not point to the presence of any structural distortion above 100 K. However, the results of first-principles-based computations indicate that a potential structural distortion within the low-dimensional tellurium fragments also correlates to an optimization of overall bonding.

探讨TbCu0.33Te2中化学键与结构畸变的关系。
固态材料的设计要求对合理结构模型中的结构偏好有透彻的了解。由于键能有助于给定结构模型的形成能,因此确定给定材料的化学键的性质也是决定性的。在这种背景下,我们有动机探索TbCu0.33Te2中低维碲碎片中的化学键与结构畸变之间的关系。三元碲化物是通过高温固相反应获得的,而基于x射线衍射实验的结构测定并未指出存在任何结构畸变。然而,基于第一性原理的计算结果表明,低维碲碎片内潜在的结构扭曲也与整体键合的优化有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信