{"title":"Quantum transport under oscillatory drive with disordered amplitude.","authors":"Vatsana Tiwari, Sushanta Dattagupta, Devendra Singh Bhakuni, Auditya Sharma","doi":"10.1088/1361-648X/adaba9","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the dynamics of non-interacting particles in a one-dimensional tight-binding chain in the presence of an electric field with random amplitude drawn from a Gaussian distribution, and explicitly focus on the nature of quantum transport. We derive an exact expression for the probability propagator and the mean-squared displacement in the clean limit and generalize it for the disordered case using the Liouville operator method. Our analysis reveals that in the presence a random static field, the system follows diffusive transport; however, an increase in the field strength causes a suppression in the transport and thus asymptotically leads towards localization. We further extend the analysis for a time-dependent disordered electric field and show that the dynamics of mean-squared-displacement deviates from the parabolic path as the field strength increases, unlike the clean limit where ballistic transport occurs.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adaba9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the dynamics of non-interacting particles in a one-dimensional tight-binding chain in the presence of an electric field with random amplitude drawn from a Gaussian distribution, and explicitly focus on the nature of quantum transport. We derive an exact expression for the probability propagator and the mean-squared displacement in the clean limit and generalize it for the disordered case using the Liouville operator method. Our analysis reveals that in the presence a random static field, the system follows diffusive transport; however, an increase in the field strength causes a suppression in the transport and thus asymptotically leads towards localization. We further extend the analysis for a time-dependent disordered electric field and show that the dynamics of mean-squared-displacement deviates from the parabolic path as the field strength increases, unlike the clean limit where ballistic transport occurs.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.