Scaling theory for non-Hermitian topological transitions.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Y R Kartik, Ranjith R Kumar
{"title":"Scaling theory for non-Hermitian topological transitions.","authors":"Y R Kartik, Ranjith R Kumar","doi":"10.1088/1361-648X/adaba8","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the critical properties is essential for determining the physical behavior of topological systems. In this context, scaling theories based on the curvature function in momentum space, the renormalization group (RG) method, and the universality of critical exponents have proven effective. In this work, we develop a scaling theory for non-Hermitian topological states of matter. We utilize the curvature function renormalization group (CRG) method, incorporating biorthonormal vectors for a one dimensional2×2non-Hermitian Dirac model. This approach allows us to analyze the Wannier state correlation function (WCF) and determine the corresponding localization critical exponent. The CRG method successfully identifies topological phase transitions and locates stable and unstable fixed points. To account for non-Hermitian effects, we construct the curvature function in the generalized Brillouin zone using non-Bloch wave functions, enabling a comprehensive WCF and CRG analysis.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adaba8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the critical properties is essential for determining the physical behavior of topological systems. In this context, scaling theories based on the curvature function in momentum space, the renormalization group (RG) method, and the universality of critical exponents have proven effective. In this work, we develop a scaling theory for non-Hermitian topological states of matter. We utilize the curvature function renormalization group (CRG) method, incorporating biorthonormal vectors for a one dimensional2×2non-Hermitian Dirac model. This approach allows us to analyze the Wannier state correlation function (WCF) and determine the corresponding localization critical exponent. The CRG method successfully identifies topological phase transitions and locates stable and unstable fixed points. To account for non-Hermitian effects, we construct the curvature function in the generalized Brillouin zone using non-Bloch wave functions, enabling a comprehensive WCF and CRG analysis.

非厄米拓扑跃迁的标度理论。
了解关键性质对于确定拓扑系统的物理行为至关重要。在此背景下,基于动量空间曲率函数的标度理论、重整化群(RG)方法和临界指数的普适性被证明是有效的。在这项工作中,我们发展了物质的非厄米拓扑状态的标度理论。我们利用曲率函数重整化群(CRG)方法,对一个2 × 2非厄米狄拉克模型结合双正交向量。该方法允许我们分析万尼尔状态相关函数(WCF)并确定相应的局部化临界指数。该方法成功地识别了拓扑相变,定位了稳定和不稳定的不动点。为了考虑非厄米效应,我们使用非布洛赫波函数在广义布里渊区构造曲率函数,从而实现全面的WCF和CRG分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信