{"title":"Study on the effects of Mogroside V in inhibiting NLRP3-mediated granulosa cell pyroptosis and insulin resistance to improve PCOS.","authors":"Wenqin Yang, Yujie Ma, Yafei Wu, Xiaocan Lei, Jing Zhang, Meixiang Li","doi":"10.1186/s13048-024-01563-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Polycystic Ovary Syndrome (PCOS) is a prevalent endocrinopathy in reproductive-aged women, contributing to 75% of infertility cases due to ovulatory dysfunction. The condition poses significant health and psychological challenges, making the study of its pathogenesis and treatment a research priority. This study investigates the effects of Mogroside V (MV) on PCOS, focusing on its anti-inflammatory and anti-insulin resistance properties.</p><p><strong>Methods: </strong>Forty-five female Sprague-Dawley rats were divided into three groups: control, PCOS model, and MV treatment. The PCOS model was induced using a high-fat diet and letrozole. The MV treatment group was subsequently administered MV after the establishment of the PCOS model. The study monitored body mass, assessed estrous cycle changes, and measured serum hormone levels. Transcriptome sequencing and bioinformatics were used to identify differentially expressed genes related to inflammation and insulin resistance. Expression of pyroptosis and insulin resistance markers was analyzed using qRT-PCR, Western blot, and IHC. Additionally, an in vitro model assessed MV's impact on inflammation and insulin resistance.</p><p><strong>Results: </strong>The PCOS group exhibited elevated serum testosterone (T), luteinizing hormone (LH), insulin, and fasting glucose levels, along with increased insulin resistance (HOMA-IR) and decreased estradiol (E2), which were reversed by MV treatment. Transcriptome analysis identified significant gene expression changes between groups, particularly in pathways related to NLRP3 inflammation and insulin metabolism. MV treatment normalized the expression of ovarian pyroptosis factors (NLRP3, Caspase-1, GSDMD) and inflammatory cytokines (IL-1β, IL-18). In cellular models, MV increased E2 levels, reduced LDH release, and decreased the expression of insulin resistance and pyroptosis markers. Correlation analysis showed pyroptosis factors were positively correlated with HOMA-IR and IGF1, and negatively with IGF1R and E2 levels.</p><p><strong>Conclusion: </strong>MV improves PCOS by reducing pyroptosis and insulin resistance, enhancing insulin sensitivity, and promoting estrogen synthesis, thereby restoring granulosa cell function and follicular development.</p>","PeriodicalId":16610,"journal":{"name":"Journal of Ovarian Research","volume":"18 1","pages":"10"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748252/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovarian Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13048-024-01563-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Polycystic Ovary Syndrome (PCOS) is a prevalent endocrinopathy in reproductive-aged women, contributing to 75% of infertility cases due to ovulatory dysfunction. The condition poses significant health and psychological challenges, making the study of its pathogenesis and treatment a research priority. This study investigates the effects of Mogroside V (MV) on PCOS, focusing on its anti-inflammatory and anti-insulin resistance properties.
Methods: Forty-five female Sprague-Dawley rats were divided into three groups: control, PCOS model, and MV treatment. The PCOS model was induced using a high-fat diet and letrozole. The MV treatment group was subsequently administered MV after the establishment of the PCOS model. The study monitored body mass, assessed estrous cycle changes, and measured serum hormone levels. Transcriptome sequencing and bioinformatics were used to identify differentially expressed genes related to inflammation and insulin resistance. Expression of pyroptosis and insulin resistance markers was analyzed using qRT-PCR, Western blot, and IHC. Additionally, an in vitro model assessed MV's impact on inflammation and insulin resistance.
Results: The PCOS group exhibited elevated serum testosterone (T), luteinizing hormone (LH), insulin, and fasting glucose levels, along with increased insulin resistance (HOMA-IR) and decreased estradiol (E2), which were reversed by MV treatment. Transcriptome analysis identified significant gene expression changes between groups, particularly in pathways related to NLRP3 inflammation and insulin metabolism. MV treatment normalized the expression of ovarian pyroptosis factors (NLRP3, Caspase-1, GSDMD) and inflammatory cytokines (IL-1β, IL-18). In cellular models, MV increased E2 levels, reduced LDH release, and decreased the expression of insulin resistance and pyroptosis markers. Correlation analysis showed pyroptosis factors were positively correlated with HOMA-IR and IGF1, and negatively with IGF1R and E2 levels.
Conclusion: MV improves PCOS by reducing pyroptosis and insulin resistance, enhancing insulin sensitivity, and promoting estrogen synthesis, thereby restoring granulosa cell function and follicular development.
期刊介绍:
Journal of Ovarian Research is an open access, peer reviewed, online journal that aims to provide a forum for high-quality basic and clinical research on ovarian function, abnormalities, and cancer. The journal focuses on research that provides new insights into ovarian functions as well as prevention and treatment of diseases afflicting the organ.
Topical areas include, but are not restricted to:
Ovary development, hormone secretion and regulation
Follicle growth and ovulation
Infertility and Polycystic ovarian syndrome
Regulation of pituitary and other biological functions by ovarian hormones
Ovarian cancer, its prevention, diagnosis and treatment
Drug development and screening
Role of stem cells in ovary development and function.