Zhenye Zhu, Min Lei, Ruizhi Guo, Yining Xu, Yanqing Zhao, Chenlu Wei, Qingling Yang, Yingpu Sun
{"title":"Nicotinamide riboside supplementation ameliorates ovarian dysfunction in a PCOS mouse model.","authors":"Zhenye Zhu, Min Lei, Ruizhi Guo, Yining Xu, Yanqing Zhao, Chenlu Wei, Qingling Yang, Yingpu Sun","doi":"10.1186/s13048-025-01596-4","DOIUrl":null,"url":null,"abstract":"<p><p>Polycystic ovary syndrome (PCOS) is the leading cause of anovulatory infertility among women of reproductive age, yet the range of effective treatment options remains limited. Our previous study revealed that reduced levels of nicotinamide adenine dinucleotide (NAD<sup>+</sup>) in ovarian granulosa cells (GCs) of women with PCOS resulted in the accumulation of reactive oxygen species (ROS) and mitochondrial dysfunction. However, it is still uncertain whether increasing NAD<sup>+</sup> levels in the ovaries could improve ovarian function in PCOS. In this study, we demonstrated that supplementation with the NAD<sup>+</sup> precursor nicotinamide riboside (NR) prevented the decrease in ovarian NAD<sup>+</sup> levels, normalized estrous cycle irregularities, and enhanced ovulation potential in dehydroepiandrosterone (DHEA)-induced PCOS mice. Moreover, NR supplementation alleviated ovarian fibrosis and enhanced mitochondrial function in ovarian stromal cells of PCOS mice. Furthermore, NR supplementation improved oocyte quality in PCOS mice, as evidenced by reduced abnormal mitochondrial clustering, enhanced mitochondrial membrane potential, decreased ROS levels, reduced spindle abnormality rates, and increased early embryonic development potential in fertilized oocytes. These findings suggest that supplementing with NAD<sup>+</sup> precursors could be a promising therapeutic strategy for addressing ovarian infertility associated with PCOS.</p>","PeriodicalId":16610,"journal":{"name":"Journal of Ovarian Research","volume":"18 1","pages":"9"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749135/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovarian Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13048-025-01596-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Polycystic ovary syndrome (PCOS) is the leading cause of anovulatory infertility among women of reproductive age, yet the range of effective treatment options remains limited. Our previous study revealed that reduced levels of nicotinamide adenine dinucleotide (NAD+) in ovarian granulosa cells (GCs) of women with PCOS resulted in the accumulation of reactive oxygen species (ROS) and mitochondrial dysfunction. However, it is still uncertain whether increasing NAD+ levels in the ovaries could improve ovarian function in PCOS. In this study, we demonstrated that supplementation with the NAD+ precursor nicotinamide riboside (NR) prevented the decrease in ovarian NAD+ levels, normalized estrous cycle irregularities, and enhanced ovulation potential in dehydroepiandrosterone (DHEA)-induced PCOS mice. Moreover, NR supplementation alleviated ovarian fibrosis and enhanced mitochondrial function in ovarian stromal cells of PCOS mice. Furthermore, NR supplementation improved oocyte quality in PCOS mice, as evidenced by reduced abnormal mitochondrial clustering, enhanced mitochondrial membrane potential, decreased ROS levels, reduced spindle abnormality rates, and increased early embryonic development potential in fertilized oocytes. These findings suggest that supplementing with NAD+ precursors could be a promising therapeutic strategy for addressing ovarian infertility associated with PCOS.
期刊介绍:
Journal of Ovarian Research is an open access, peer reviewed, online journal that aims to provide a forum for high-quality basic and clinical research on ovarian function, abnormalities, and cancer. The journal focuses on research that provides new insights into ovarian functions as well as prevention and treatment of diseases afflicting the organ.
Topical areas include, but are not restricted to:
Ovary development, hormone secretion and regulation
Follicle growth and ovulation
Infertility and Polycystic ovarian syndrome
Regulation of pituitary and other biological functions by ovarian hormones
Ovarian cancer, its prevention, diagnosis and treatment
Drug development and screening
Role of stem cells in ovary development and function.