{"title":"The pathogenic burden potential of airborne particles in emanating from the respiratory area of COVID-19 patients (a case study).","authors":"Somayeh Soleimani-Alyar, Rasoul Yarahmadi, Maryam Borhani-Jebeli, Golnaz Yarahmadi, Farah Bokharaei-Salim, Alireza Alipour, Maryam Soleimani-Alyar, Hamid-Reza Monavari, Mohammad-Mehdi Darvishi, Sara Dalvand","doi":"10.1080/15459624.2024.2447317","DOIUrl":null,"url":null,"abstract":"<p><p>The pathogenic potential of airborne particles carrying the SARS-CoV-2 viral genome was examined by considering the size distribution of airborne particles at given distances from the respiratory zone of an infected patient after coughing or sneezing with a focus on time, temperature, and relative humidity. The results show an association between the size distribution of airborne particles, particularly PM<sub>1</sub> and PM<sub>2.5</sub>, and the presence of viral genome in different stations affected by the distance from the respiratory zone and the passage of time. The correlation with time was strong with all the dependent factors except PM<sub>1</sub>. Also, the effect of time intervals on the median concentration of airborne PM in the range of PM<sub>7</sub> and PM<sub>10</sub> was significant. Accordingly, in the first 20 min after coughing, the COVID-19 patient was more likely to be exposed to PM-carrying RNA genomes of SARS-CoV-2. The other finding was that the two distances of 0.25 m to the patient's left of the respiratory zone and 1.0 m above the breathing zone showed positive results for the presence of SARS-CoV-2 in all studied time intervals. The patterns of results suggested that there was a high potential for distribution of the virus in an infected patient based on position and airflow and that the severity of infection and viral load may influence the presence of viral load in droplets when coughing. Based on the results, one can conclude that ventilation plays a key role in mitigating the risk of airborne virus transmission in indoor environments, and it has been shown that reductions in particulate concentrations occur when portable air purifiers are placed near the breathing zone. The use of personal protective equipment for the patient and healthcare personnel to minimize the distribution of virus particles in the air is recommended.</p>","PeriodicalId":16599,"journal":{"name":"Journal of Occupational and Environmental Hygiene","volume":" ","pages":"1-13"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Occupational and Environmental Hygiene","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15459624.2024.2447317","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The pathogenic potential of airborne particles carrying the SARS-CoV-2 viral genome was examined by considering the size distribution of airborne particles at given distances from the respiratory zone of an infected patient after coughing or sneezing with a focus on time, temperature, and relative humidity. The results show an association between the size distribution of airborne particles, particularly PM1 and PM2.5, and the presence of viral genome in different stations affected by the distance from the respiratory zone and the passage of time. The correlation with time was strong with all the dependent factors except PM1. Also, the effect of time intervals on the median concentration of airborne PM in the range of PM7 and PM10 was significant. Accordingly, in the first 20 min after coughing, the COVID-19 patient was more likely to be exposed to PM-carrying RNA genomes of SARS-CoV-2. The other finding was that the two distances of 0.25 m to the patient's left of the respiratory zone and 1.0 m above the breathing zone showed positive results for the presence of SARS-CoV-2 in all studied time intervals. The patterns of results suggested that there was a high potential for distribution of the virus in an infected patient based on position and airflow and that the severity of infection and viral load may influence the presence of viral load in droplets when coughing. Based on the results, one can conclude that ventilation plays a key role in mitigating the risk of airborne virus transmission in indoor environments, and it has been shown that reductions in particulate concentrations occur when portable air purifiers are placed near the breathing zone. The use of personal protective equipment for the patient and healthcare personnel to minimize the distribution of virus particles in the air is recommended.
期刊介绍:
The Journal of Occupational and Environmental Hygiene ( JOEH ) is a joint publication of the American Industrial Hygiene Association (AIHA®) and ACGIH®. The JOEH is a peer-reviewed journal devoted to enhancing the knowledge and practice of occupational and environmental hygiene and safety by widely disseminating research articles and applied studies of the highest quality.
The JOEH provides a written medium for the communication of ideas, methods, processes, and research in core and emerging areas of occupational and environmental hygiene. Core domains include, but are not limited to: exposure assessment, control strategies, ergonomics, and risk analysis. Emerging domains include, but are not limited to: sensor technology, emergency preparedness and response, changing workforce, and management and analysis of "big" data.