Xinrong Zhou, Hongchao Liu, Sidi Yang, Xiaoran Dong, Cailing Xie, Weixin Ou, Jinwei Chen, Zixiao Yang, Yuzhen Ye, Konstantin I Ivanov, Lihong Liu, Jie Zou, Chunmei Li, Deyin Guo
{"title":"Rapid Generation of Reverse Genetics Systems for Coronavirus Research and High-Throughput Antiviral Screening Using Gibson DNA Assembly.","authors":"Xinrong Zhou, Hongchao Liu, Sidi Yang, Xiaoran Dong, Cailing Xie, Weixin Ou, Jinwei Chen, Zixiao Yang, Yuzhen Ye, Konstantin I Ivanov, Lihong Liu, Jie Zou, Chunmei Li, Deyin Guo","doi":"10.1002/jmv.70171","DOIUrl":null,"url":null,"abstract":"<p><p>Coronaviruses (CoVs) pose a significant threat to human health, as demonstrated by the COVID-19 pandemic. The large size of the CoV genome (around 30 kb) represents a major obstacle to the development of reverse genetics systems, which are invaluable for basic research and antiviral drug screening. In this study, we established a rapid and convenient method for generating reverse genetic systems for various CoVs using a bacterial artificial chromosome (BAC) vector and Gibson DNA assembly. Using this system, we constructed infectious cDNA clones of coronaviruses from three genera: human coronavirus 229E (HCoV-229E) of the genus Alphacoronavirus, mouse hepatitis virus A59 (MHV-59) of Betacoronavirus, and porcine deltacoronavirus (PDCoV-Haiti) of Deltacoronavirus. Since beta coronaviruses including severe acute respiratory syndrome coronavirus (SARS-CoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and Middle East respiratory syndrome coronavirus (MERS-CoV) represent major human pathogens, we modified the infectious clone of the beta coronavirus MHV-A59 by replacing its NS5a gene with a fluorescent reporter gene to create a system suitable for high-throughput drug screening. Thus, this study provides a practical and cost-effective approach to developing reverse genetics platforms for CoV research and antiviral drug screening.</p>","PeriodicalId":16354,"journal":{"name":"Journal of Medical Virology","volume":"97 1","pages":"e70171"},"PeriodicalIF":6.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jmv.70171","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Coronaviruses (CoVs) pose a significant threat to human health, as demonstrated by the COVID-19 pandemic. The large size of the CoV genome (around 30 kb) represents a major obstacle to the development of reverse genetics systems, which are invaluable for basic research and antiviral drug screening. In this study, we established a rapid and convenient method for generating reverse genetic systems for various CoVs using a bacterial artificial chromosome (BAC) vector and Gibson DNA assembly. Using this system, we constructed infectious cDNA clones of coronaviruses from three genera: human coronavirus 229E (HCoV-229E) of the genus Alphacoronavirus, mouse hepatitis virus A59 (MHV-59) of Betacoronavirus, and porcine deltacoronavirus (PDCoV-Haiti) of Deltacoronavirus. Since beta coronaviruses including severe acute respiratory syndrome coronavirus (SARS-CoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and Middle East respiratory syndrome coronavirus (MERS-CoV) represent major human pathogens, we modified the infectious clone of the beta coronavirus MHV-A59 by replacing its NS5a gene with a fluorescent reporter gene to create a system suitable for high-throughput drug screening. Thus, this study provides a practical and cost-effective approach to developing reverse genetics platforms for CoV research and antiviral drug screening.
期刊介绍:
The Journal of Medical Virology focuses on publishing original scientific papers on both basic and applied research related to viruses that affect humans. The journal publishes reports covering a wide range of topics, including the characterization, diagnosis, epidemiology, immunology, and pathogenesis of human virus infections. It also includes studies on virus morphology, genetics, replication, and interactions with host cells.
The intended readership of the journal includes virologists, microbiologists, immunologists, infectious disease specialists, diagnostic laboratory technologists, epidemiologists, hematologists, and cell biologists.
The Journal of Medical Virology is indexed and abstracted in various databases, including Abstracts in Anthropology (Sage), CABI, AgBiotech News & Information, National Agricultural Library, Biological Abstracts, Embase, Global Health, Web of Science, Veterinary Bulletin, and others.