{"title":"Screening to isolate Bacillus subtilis mutants with enhanced NADPH levels.","authors":"Yuzheng Wu, Shu Ishikawa, Ken-Ichi Yoshida","doi":"10.2323/jgam.2025.01.001","DOIUrl":null,"url":null,"abstract":"<p><p>As the first step toward understanding how NADPH levels are regulated in Bacillus subtilis, we sought to obtain mutant strains with enhanced NADPH levels. Our previous study demonstrated that in a strain of B. subtilis expressing bacterial luciferase derived from Photorhabdus luminescens, artificially enhancing NADPH levels enhanced luciferase luminescence in the colonies. In this study, from a library of ethyl methanesulfonate-treated mutants, those with enhanced luciferase luminescence in colonies were isolated, and five isolates were further selected by luminescence in microplate culture. Finally, we measured intracellular NADPH levels of them and found that all the five strains had significantly enhanced NADPH levels compared to the parental strain. In addition, four strains significantly increased total NADP(H) levels. These results demonstrate the effectiveness of our strategy as a methodology for obtaining mutant strains useful for elucidating the mechanisms for regulation of NADPH levels in B. subtilis.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General and Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2323/jgam.2025.01.001","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As the first step toward understanding how NADPH levels are regulated in Bacillus subtilis, we sought to obtain mutant strains with enhanced NADPH levels. Our previous study demonstrated that in a strain of B. subtilis expressing bacterial luciferase derived from Photorhabdus luminescens, artificially enhancing NADPH levels enhanced luciferase luminescence in the colonies. In this study, from a library of ethyl methanesulfonate-treated mutants, those with enhanced luciferase luminescence in colonies were isolated, and five isolates were further selected by luminescence in microplate culture. Finally, we measured intracellular NADPH levels of them and found that all the five strains had significantly enhanced NADPH levels compared to the parental strain. In addition, four strains significantly increased total NADP(H) levels. These results demonstrate the effectiveness of our strategy as a methodology for obtaining mutant strains useful for elucidating the mechanisms for regulation of NADPH levels in B. subtilis.
期刊介绍:
JGAM is going to publish scientific reports containing novel and significant microbiological findings, which are mainly devoted to the following categories: Antibiotics and Secondary Metabolites; Biotechnology and Metabolic Engineering; Developmental Microbiology; Environmental Microbiology and Bioremediation; Enzymology; Eukaryotic Microbiology; Evolution and Phylogenetics; Genome Integrity and Plasticity; Microalgae and Photosynthesis; Microbiology for Food; Molecular Genetics; Physiology and Cell Surface; Synthetic and Systems Microbiology.