Chronic high fat diet-induced cerebrovascular remodeling impairs recovery of blood flow after cerebral ischemia in mice.

IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Jun Li, Naidi Sun, Song Hu, Zhiyi Zuo
{"title":"Chronic high fat diet-induced cerebrovascular remodeling impairs recovery of blood flow after cerebral ischemia in mice.","authors":"Jun Li, Naidi Sun, Song Hu, Zhiyi Zuo","doi":"10.1177/0271678X251313723","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity and associated metabolic disturbances worsen brain ischemia outcome. High fat diet (HFD)-fed mice are obese and have cerebrovascular remodeling and worsened brain ischemia outcome. We determined whether HFD-induced cerebrovascular remodeling impaired reperfusion to the ischemic penumbra. Six-week-old C57BL/6J or matrix metalloprotease-9 knockout (MMP-9<sup>-/-</sup>) mice were on HFD or regular diet (RD) for 12 to 14 months before a 60-min left middle cerebral arterial occlusion (MCAO). Photoacoustic microscopy was performed at left cerebral frontal cortex. HFD increased cerebrovascular density and tortuosity in C57BL/6J mice but not in MMP-9<sup>-/-</sup> mice. Blood flow to the ischemic penumbra slowly recovered but did not reach the baseline 2 h after MCAO in RD-fed mice. Oxygen extraction fraction was increased to maintain cerebral metabolic rate of oxygen (CMRO<sub>2</sub>) throughout brain ischemia and reperfusion period. This blood flow recovery was worsened in HFD-fed mice, leading to decreased CMRO<sub>2</sub>. MMP-9<sup>-/-</sup> attenuated these HFD effects. HFD increased MMP-9 activity and interleukin 1β. Pyrrolidine dithiocarbamate, an anti-inflammatory agent, abolished the HFD effects. Interleukin 1β increased MMP-9 activity. In summary, HFD induces cerebrovascular remodeling, leading to worsened recovery of blood supply to the ischemic penumbra to contribute to poor outcome after brain ischemia. Neuroinflammation may activate MMP-9 in HFD-fed mice.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X251313723"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748376/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X251313723","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Obesity and associated metabolic disturbances worsen brain ischemia outcome. High fat diet (HFD)-fed mice are obese and have cerebrovascular remodeling and worsened brain ischemia outcome. We determined whether HFD-induced cerebrovascular remodeling impaired reperfusion to the ischemic penumbra. Six-week-old C57BL/6J or matrix metalloprotease-9 knockout (MMP-9-/-) mice were on HFD or regular diet (RD) for 12 to 14 months before a 60-min left middle cerebral arterial occlusion (MCAO). Photoacoustic microscopy was performed at left cerebral frontal cortex. HFD increased cerebrovascular density and tortuosity in C57BL/6J mice but not in MMP-9-/- mice. Blood flow to the ischemic penumbra slowly recovered but did not reach the baseline 2 h after MCAO in RD-fed mice. Oxygen extraction fraction was increased to maintain cerebral metabolic rate of oxygen (CMRO2) throughout brain ischemia and reperfusion period. This blood flow recovery was worsened in HFD-fed mice, leading to decreased CMRO2. MMP-9-/- attenuated these HFD effects. HFD increased MMP-9 activity and interleukin 1β. Pyrrolidine dithiocarbamate, an anti-inflammatory agent, abolished the HFD effects. Interleukin 1β increased MMP-9 activity. In summary, HFD induces cerebrovascular remodeling, leading to worsened recovery of blood supply to the ischemic penumbra to contribute to poor outcome after brain ischemia. Neuroinflammation may activate MMP-9 in HFD-fed mice.

慢性高脂饮食诱导的脑血管重塑损害小鼠脑缺血后血流恢复。
肥胖和相关的代谢紊乱会加重脑缺血的结果。高脂饮食(HFD)喂养的小鼠肥胖,脑血管重构和脑缺血结果恶化。我们确定hfd诱导的脑血管重塑是否会损害缺血半暗区的再灌注。6周龄的C57BL/6J或基质金属蛋白酶-9敲除(MMP-9-/-)小鼠在进行60分钟左脑中动脉闭塞(MCAO)治疗前,采用HFD或常规饮食(RD) 12至14个月。在左侧大脑额叶皮层进行光声显微镜检查。HFD增加了C57BL/6J小鼠的脑血管密度和弯曲度,但对MMP-9-/-小鼠没有影响。rd喂养小鼠缺血半暗带血流量缓慢恢复,但在MCAO后2小时未达到基线。增加氧提取分数,维持脑缺血再灌注期间脑氧代谢率(cro2)。在饲喂hfd的小鼠中,这种血流恢复恶化,导致cmor2下降。MMP-9-/-减弱了这些HFD效应。HFD增加MMP-9活性和白细胞介素1β。吡咯烷二硫代氨基甲酸酯,一种抗炎剂,消除了HFD的作用。白细胞介素1β增加MMP-9活性。综上所述,HFD诱导脑血管重构,导致缺血半暗带血供恢复恶化,导致脑缺血后预后不良。hfd喂养小鼠的神经炎症可激活MMP-9。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cerebral Blood Flow and Metabolism
Journal of Cerebral Blood Flow and Metabolism 医学-内分泌学与代谢
CiteScore
12.00
自引率
4.80%
发文量
300
审稿时长
3 months
期刊介绍: JCBFM is the official journal of the International Society for Cerebral Blood Flow & Metabolism, which is committed to publishing high quality, independently peer-reviewed research and review material. JCBFM stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信