Metal-Organic Frameworks MIL-101(Fe) and MIL-53(Al) as Efficient Adsorbents for Dispersive Micro-Solid-Phase Extraction of Sorafenib in Plasma and Wastewater, Coupled with HPLC-UV Analysis.
Azra Takhvar, Somaye Akbari, Effat Souri, Reza Ahmadkhaniha, Ali Morsali, Mohammad Reza Khoshayand, Mohsen Amini, Alireza Taheri
{"title":"Metal-Organic Frameworks MIL-101(Fe) and MIL-53(Al) as Efficient Adsorbents for Dispersive Micro-Solid-Phase Extraction of Sorafenib in Plasma and Wastewater, Coupled with HPLC-UV Analysis.","authors":"Azra Takhvar, Somaye Akbari, Effat Souri, Reza Ahmadkhaniha, Ali Morsali, Mohammad Reza Khoshayand, Mohsen Amini, Alireza Taheri","doi":"10.1093/chromsci/bmaf003","DOIUrl":null,"url":null,"abstract":"<p><p>In the present study, metal-organic frameworks, MIL-101(Fe) and MIL-53(Al), were synthesized under solvothermal conditions and were characterized by Fourier transform infrared spectroscopy, X-ray energy diffraction spectroscopy and scanning electron microscopy. The synthesized metal-organic frameworks were utilized for the purpose of dispersive micro-solid phase extraction of sorafenib in both human plasma and wastewater, which was subsequently followed by high performance liquid chromatography with ultraviolet determination. Parameters affecting extraction efficacy including adsorbent amount, ionic strength, pH, type of elution solvent, adsorption and desorption time were optimized. Under optimal experimental conditions, the linearity in human plasma and wastewater was achieved in the range of 0.25-5.00 and 0.01-0.20 μg/mL, respectively. The extraction recovery for MIL-101(Fe) and MIL-53(Al), respectively, was calculated in human plasma and wastewater and found to be in the range of 86.27-99.47%.</p>","PeriodicalId":15430,"journal":{"name":"Journal of chromatographic science","volume":"63 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chromatographic science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/chromsci/bmaf003","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In the present study, metal-organic frameworks, MIL-101(Fe) and MIL-53(Al), were synthesized under solvothermal conditions and were characterized by Fourier transform infrared spectroscopy, X-ray energy diffraction spectroscopy and scanning electron microscopy. The synthesized metal-organic frameworks were utilized for the purpose of dispersive micro-solid phase extraction of sorafenib in both human plasma and wastewater, which was subsequently followed by high performance liquid chromatography with ultraviolet determination. Parameters affecting extraction efficacy including adsorbent amount, ionic strength, pH, type of elution solvent, adsorption and desorption time were optimized. Under optimal experimental conditions, the linearity in human plasma and wastewater was achieved in the range of 0.25-5.00 and 0.01-0.20 μg/mL, respectively. The extraction recovery for MIL-101(Fe) and MIL-53(Al), respectively, was calculated in human plasma and wastewater and found to be in the range of 86.27-99.47%.
期刊介绍:
The Journal of Chromatographic Science is devoted to the dissemination of information concerning all methods of chromatographic analysis. The standard manuscript is a description of recent original research that covers any or all phases of a specific separation problem, principle, or method. Manuscripts which have a high degree of novelty and fundamental significance to the field of separation science are particularly encouraged. It is expected the authors will clearly state in the Introduction how their method compares in some markedly new and improved way to previous published related methods. Analytical performance characteristics of new methods including sensitivity, tested limits of detection or quantification, accuracy, precision, and specificity should be provided. Manuscripts which describe a straightforward extension of a known analytical method or an application to a previously analyzed and/or uncomplicated sample matrix will not normally be reviewed favorably. Manuscripts in which mass spectrometry is the dominant analytical method and chromatography is of marked secondary importance may be declined.